【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)(k>0)的圖象相交于A,B兩點,與x軸相交于點C(4,0),且點B(3,n),連接OB.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△BOC的面積;
(3)將直線AB向下平移,若平移后的直線與反比例函數(shù)的圖象只有一個交點,試說明直線AB向下平移了幾個單位長度.
【答案】(1)y=﹣x+4,y=;(2)2;(3)4+2或4﹣2
【解析】
(1)用待定系數(shù)法即可求解;
(2)△BOC的面積=OC×BD=×4×1=2;
(3)直線AB向下平移m個單位后和反比例函數(shù)只有一個公共點,則=﹣x+4﹣m,整理得:x2+(m﹣4)x+3=0,△=b2﹣4ac=0,即可求解.
(1)將點C的坐標(biāo)代入一次函數(shù)表達(dá)式y=﹣x+b并解得:b=4,
故一次函數(shù)的表達(dá)式為:y=﹣x+4,
將點B的坐標(biāo)代入y=﹣x+4得:n=﹣3+4=1,故點B(3,1),
將點B的坐標(biāo)代入反比例函數(shù)表達(dá)式并解得:k=3,
故反比例函數(shù)表達(dá)式為:y=;
(2)過點B作BD⊥x軸于點D,則BD=1,又OC=4,
則△BOC的面積=OC×BD=×4×1=2;
(3)將直線AB向下平移m個單位(m>0)得到直線的表達(dá)式為:y=﹣x+4+m,
∵直線AB向下平移m個單位后和反比例函數(shù)只有一個公共點,則=﹣x+4﹣m,整理得:x2+(m﹣4)x+3=0,
∴△=b2﹣4ac=(m﹣4)2﹣4×1×3=0,解得:m=4±2,
故直線AB向下平移了4+2或4﹣2個長度單位.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新學(xué)期開始時,某校九年級一班的同學(xué)為了增添教室綠色文化,打造溫馨舒適的學(xué)習(xí)環(huán)境,準(zhǔn)備到一家植物種植基地購買A、B兩種花苗.據(jù)了解,購買A種花苗3盆,B種花苗5盆,則需210元;購買A種花苗4盆,B種花苗10盆,則需380元.
(1)求A、B兩種花苗的單價分別是多少元?
(2)經(jīng)九年級一班班委會商定,決定購買A、B兩種花苗共12盆進(jìn)行搭配裝扮教室.種植基地銷售人員為了支持本次活動,為該班同學(xué)提供以下優(yōu)惠:購買幾盆B種花苗,B種花苗每盆就降價幾元,請你為九年級一班的同學(xué)預(yù)算一下,本次購買至少準(zhǔn)備多少錢?最多準(zhǔn)備多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日,在公安部交通管理局部署下,全國各地交警都在大力開展|一盔一帶安全守護(hù)行動,為了解市民對騎電動車戴頭盔的贊同情況,某課題小組隨機(jī)調(diào)查了部分市民,并根據(jù)調(diào)查結(jié)果繪制了尚不完整的統(tǒng)計圖.
根據(jù)以上統(tǒng)計圖回答一下問題:
(1)這次調(diào)查的市民共_______人;
(2)若選擇的人數(shù)是選擇的人數(shù)的3倍,則扇形統(tǒng)計圖中,扇形的圓心角度數(shù)是______;
(3)補全條形統(tǒng)計圖;
(4)若該市約有80萬人,請估計安全意識淡。ㄟx擇D或E)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖,若菱形AECF與正方形ABCD兩個頂點A,C重合,另外兩個頂點E,F在正方形ABCD的內(nèi)部,則稱菱形AECF為正方形ABCD的內(nèi)含菱形.
若正方形的周長為16,其內(nèi)含菱形邊長是整數(shù),則內(nèi)含菱形的周長為________;
若正方形的面積為18,其內(nèi)含菱形的面積為6,則內(nèi)含菱形的邊長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求拋物線的解析式;
(2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標(biāo)為t,
①設(shè)拋物線對稱軸l與x軸交于一點E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時,點P的坐標(biāo);
②是否存在一點P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售,兩種商品,售出2件種商品和3件種商品所得利潤為700元;售出3件種商品和5件種商品所得利潤為1100元.
(1)求每件種商品和每件種商品售出后所得利潤分別為多少元;
(2)由于需求量大,,兩種商品很快售完,商場決定再一次購進(jìn),兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么此商場至少需購進(jìn)多少件種商品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D,以AB上某一點O為圓心作⊙O,使⊙O經(jīng)過點A和點D,與AB邊的另一個交點為E.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為4,∠B=30°.求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,AB在x軸上,點G與點A重合,點F在AD上,三角板的直角邊EF交BC于點M,反比例函數(shù)(x0)的圖象恰好經(jīng)過點F,M.若直尺的寬CD=2,三角板的斜邊FG=,則k=____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com