【題目】綜合與實(shí)踐

折紙是同學(xué)們喜歡的手工活動(dòng)之一,通過折紙我們既可以得到許多美麗的圖形,同時(shí)折紙的過程還蘊(yùn)含著豐富的數(shù)學(xué)知識(shí).折一折:把邊長(zhǎng)為的正方形紙片對(duì)折,使邊重合,展開后得到折痕.如圖①:點(diǎn)上一點(diǎn),將正方形紙片沿直線折疊,使點(diǎn)落在上的點(diǎn)處,展開后連接,,如圖②

圖① 圖②

(一)填一填,做一做:

1)圖②中,_______.線段 _______

2)圖②中,試判斷的形狀,并給出證明.

剪一剪、折一折:將圖②中的剪下來,將其沿直線折疊,使點(diǎn)落在點(diǎn)處,分別得到圖③、圖④.

(二)填一填

圖③ 圖④

3)圖③中陰影部分的周長(zhǎng)為_______

4)圖③中,若,則_______°.

5)圖③中的相似三角形(包括全等三角形)共有_______對(duì);

6)如圖④點(diǎn)落在邊上,若_______,則_______用含,的代數(shù)式表示).

【答案】1,2是等邊三角形(3;(456

【解析】

1)由折疊的性質(zhì)得,四邊形是矩形,得出,,由折疊的性質(zhì)得出,,得出,得出,,因此,

2)證明得出,即可得出是等邊三角形;

3)由折疊的性質(zhì)得出,,得出圖③中陰影部分的周長(zhǎng)的周長(zhǎng);

4)由折疊的性質(zhì)得出,,求出,得出,即可得出結(jié)果;

5)證明,即可得出結(jié)論;

6)設(shè),則,證明,得出,設(shè)

,,則,,得出,解得:,得出

解:(1)由折疊的性質(zhì)得,四邊形是矩形,

,,

將正方形紙片沿直線折疊,使點(diǎn)落在上的點(diǎn)處,

,

,

,;

故答案為,

2是等邊三角形,理由如下:

中,,

,

,

是等邊三角形;

3)∵將圖②中的沿直線折疊,使點(diǎn)落在點(diǎn)處,

,,

圖③中陰影部分的周長(zhǎng)的周長(zhǎng)

故答案為

4將圖②中的沿直線折疊,使點(diǎn)落在點(diǎn)處,

,,

,

°,

;

故答案為

5)如圖③,

,

,

,

圖③中的相似三角形(包括全等三角形)共有對(duì),

圖③

故答案為;

6)設(shè),則,

,

,

,

設(shè),,則,

,

解得:

;

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具商場(chǎng)計(jì)劃購進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如下表:

原進(jìn)價(jià)(元/張)

零售價(jià)(元/張)

成套售價(jià)(元/套)

餐桌

a

380

940

餐椅

160

已知用600元購進(jìn)的餐椅數(shù)量與用1300元購進(jìn)的餐桌數(shù)量相同.

1)求表中a的值;

2)該商場(chǎng)計(jì)劃購進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.若將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售,請(qǐng)問怎樣進(jìn)貨,才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長(zhǎng)為8cm,寬4cm的矩形紙片ABCD折疊,使點(diǎn)AC重合,則折痕EF的長(zhǎng)為(  )

A.8cmB.4cmC.5cmD.2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好地提高業(yè)主垃圾分類的意識(shí),某小區(qū)物業(yè)管理委員會(huì)決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買3個(gè)溫馨提示牌和2個(gè)垃圾箱共需要420元,且每個(gè)溫馨提示牌比垃圾箱便宜60元.

1)問購買1個(gè)溫馨提示牌和1個(gè)垃圾箱各需要多少元?

2)如果需要購買溫馨提示牌和垃圾箱共80個(gè),且費(fèi)用不超過8000元,問最多可以購買垃圾箱多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)P是直線上一點(diǎn),且,則點(diǎn)P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=x與反比例函數(shù)y=的圖象交于關(guān)于原點(diǎn)對(duì)稱的A,B兩點(diǎn),已知A點(diǎn)的縱坐標(biāo)是3

1)求反比例函數(shù)的表達(dá)式;

2)將直線y=x向上平移后與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C,如果ABC的面積為48,求平移后的直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在信息快速發(fā)展的社會(huì),信息消費(fèi)已成為人們生活的重要組成部分,某高校組織課外小組在我市的一個(gè)社區(qū)隨機(jī)抽取部分家庭,調(diào)查每月用于信息消費(fèi)的金額,根據(jù)數(shù)據(jù)整理成如下不完整統(tǒng)計(jì)表和統(tǒng)計(jì)圖(如圖).已知,兩組戶數(shù)頻數(shù)宜方圖的高度比為15

月信息消費(fèi)額分組統(tǒng)計(jì)表

組別

消費(fèi)額/

請(qǐng)結(jié)合圖表中相關(guān)數(shù)據(jù)解答下列問題:

1)這次接受調(diào)查的有_________戶;

2請(qǐng)你補(bǔ)全頻數(shù)直方圖;

3)以各組組中值代表本組的月信息消費(fèi)額的平均數(shù),計(jì)算課外小組抽取家庭的月信息消費(fèi)額的平均數(shù);

4)若該社區(qū)有2000戶住戶,請(qǐng)估計(jì)月信息消費(fèi)額不少于200元的戶數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形中,對(duì)角線、相交于點(diǎn),,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段的速度向點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段支向點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)停止時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止,設(shè)運(yùn)動(dòng)時(shí)間為(單位:)(),以點(diǎn)為圓心,長(zhǎng)為半徑的⊙M與射線、線段分別交于點(diǎn),連接

1)求的長(zhǎng)(用含有的代數(shù)式表示),并求出的取值范圍;

2)當(dāng)為何值時(shí),線段與⊙M相切?

3)若⊙M與線段只有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,把 繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn),分別對(duì)應(yīng)點(diǎn),且滿足,三點(diǎn)在同一條直線上,連接于點(diǎn),的外接圓圓O交于、

1)求證:是圓O切線;

2)如圖2連接,若,判斷四邊形的形狀,并說明理由;

3)在(2)的條件下,若,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案