【題目】已知AB是半徑為1的圓O直徑,C是圓上一點(diǎn),D是BC延長(zhǎng)線上一點(diǎn),過點(diǎn)D的直線交AC于E點(diǎn),且△AEF為等邊三角形.
(1)求證:△DFB是等腰三角形;
(2)若DA=AF,求證:CF⊥AB.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)由AB是⊙O直徑,得到∠ACB=90°,由于△AEF為等邊三角形,得到∠CAB=∠EFA=60°,根據(jù)三角形的外角的性質(zhì)即可得到結(jié)論;
(2)過點(diǎn)A作AM⊥DF于點(diǎn)M,設(shè)AF=2a,根據(jù)等邊三角形的性質(zhì)得到FM=EN=a,AM=a,在根據(jù)已知條件得到AB=AF+BF=8a,根據(jù)直角三角形的性質(zhì)得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根據(jù)三角形的內(nèi)角和即可得到結(jié)論.
試題解析:(1)∵AB是⊙O直徑,∴∠ACB=90°,∵△AEF為等邊三角形,∴∠CAB=∠EFA=60°,∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;
(2)過點(diǎn)A作AM⊥DF于點(diǎn)M,設(shè)AF=2a,∵△AEF是等邊三角形,∴FM=EN=a,AM=a,在Rt△DAM中,AD=AF=a,AM=,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=CE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)圓的一些結(jié)論,其中正確的是( )
A.任意三點(diǎn)可以確定一個(gè)圓B.相等的圓心角所對(duì)的弧相等
C.平分弦的直徑垂直于弦,并且平分弦所對(duì)的弧D.圓內(nèi)接四邊形對(duì)角互補(bǔ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,點(diǎn)C到點(diǎn)A、點(diǎn)B的距離相等,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為 x ( x 大于0)秒.
(1)點(diǎn)C表示的數(shù)是;
(2)當(dāng) 秒時(shí),點(diǎn)P到達(dá)點(diǎn)A處?
(3)運(yùn)動(dòng)過程中點(diǎn)P表示的數(shù)是(用含字母 的式子表示);
(4)當(dāng)P,C之間的距離為2個(gè)單位長(zhǎng)度時(shí),求 x 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,F(xiàn)在函數(shù)y= (x>0)的圖象上,直線EF分別與x軸、y軸交于點(diǎn)A,B,且BE:BF=1:m.過點(diǎn)E作EP⊥y軸于P,已知△OEP的面積為1,則k值是 , △OEF的面積是(用含m的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( )(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
A.30.6 B.32.1 C.37.9 D.39.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)五角星圖案,則∠A+∠B+∠C+∠D+∠E的度數(shù)是( )
A.180°
B.150°
C.135°
D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程x2﹣6x﹣8=0,下列變形正確的是( 。
A. (x﹣6)2=﹣8+36 B. (x﹣6)2=8+36 C. (x﹣3)2=8+9 D. (x﹣3)2=﹣8+9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠A=∠B=∠C,點(diǎn)E在邊AB上,∠AED=60°,則一定有( )
A.∠ADE=20° B.∠ADE=30°
C.∠ADE=∠ADC D.∠ADE=∠ADC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com