【題目】如圖是一個(gè)五角星圖案,則∠A+∠B+∠C+∠D+∠E的度數(shù)是( )
A.180°
B.150°
C.135°
D.120°
【答案】A
【解析】解:如圖,由三角形的外角性質(zhì)得,∠1=∠A+∠C,∠2=∠B+∠D, ∵∠1+∠2+∠E=180°,
∴∠A+∠B+∠C+∠D+∠E=180°.
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和三角形的外角的相關(guān)知識(shí)可以得到問題的答案,需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB是⊙O的直徑,E是AB延長線上一點(diǎn),EC切⊙O于點(diǎn)C,OP⊥AO交AC于點(diǎn)P,交EC的延長線于點(diǎn)D.
(1)求證:△PCD是等腰三角形;
(2)CG⊥AB于H點(diǎn),交⊙O于G點(diǎn),過B點(diǎn)作BF∥EC,交⊙O于點(diǎn)F,交CG于Q點(diǎn),連接AF,如圖2,若sinE=,CQ=5,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是的中點(diǎn),AE⊥AC于A,與⊙O及CB的延長線交于點(diǎn)F、E,且.
(1)求證:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,P,B,C是圓上的四個(gè)點(diǎn),∠APC=∠CPB=60°,AP,CB的延長線相交于點(diǎn)D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是半徑為1的圓O直徑,C是圓上一點(diǎn),D是BC延長線上一點(diǎn),過點(diǎn)D的直線交AC于E點(diǎn),且△AEF為等邊三角形.
(1)求證:△DFB是等腰三角形;
(2)若DA=AF,求證:CF⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面計(jì)算錯(cuò)誤的是( 。
A.(3a3)(﹣2a2)=﹣6a5
B.(3a)2(2a2)=6a4
C.3a32a2=6a5
D.(﹣3a2)(﹣2a2)=6a4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=2,BC=5,AB⊥BC于B,l⊥BC于C,點(diǎn)P自點(diǎn)B開始沿射線BC移動(dòng),過點(diǎn)P作PQ⊥PA交直線l于點(diǎn)Q.
(1)求證:∠A=∠QPC;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),PA=PQ?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù) 與函數(shù) 在第一象限內(nèi)的圖象,點(diǎn)P是 的圖象上一動(dòng)點(diǎn),PA⊥x軸于點(diǎn)A , 交 的圖象于點(diǎn)C, PB⊥y軸于點(diǎn)B , 交 的圖象于點(diǎn)D.
(1)求證:D是BP的中點(diǎn);
(2)求出四邊形ODPC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com