【題目】在Rt△ABC中,,,,CP、CM分別是AB上的高和中線,如果圓A是以點A為圓心,半徑長為2的圓,那么下列判斷正確的是( )
A. 點P,M均在圓A內(nèi) B. 點P、M均在圓A外
C. 點P在圓A內(nèi),點M在圓A外 D. 點P在圓A外,點M在圓A內(nèi)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2-2x-3的頂點為A,交x軸于B,D兩點,與y軸交于點C.
(1)求線段BD的長;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上.
(1)畫出△ABC關(guān)于原點成中心對稱的△A′B′C′,并直接寫出△A′B′C′各頂點的坐標(biāo);
(2)連接BC′,B′C,求四邊形BCB′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點P(x,y),我們把點P′(﹣y+1,x+1)叫做點P的伴隨點.已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An,….若點A1的坐標(biāo)為(a,b),則點A2020的坐標(biāo)為( )
A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=88°,∠BAC的平分線與AB的垂直平分線交于點O,點E、F分別在BC、AC上,點C沿EF折疊后與點O重合,則∠DOE的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點F,∠ABC的平分線交AD于點E,連接BD,CD.
(1)求證:BD=CD;
(2)請判斷B,E,C三點是否在以D為圓心,以DB為半徑的圓上?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,,點為邊上一點,且,為邊的中點,連接,設(shè)
(1)當(dāng)時(如圖),連接,則的長為___________;
(2)設(shè),求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)取的中點,連接并延長交的延長線于點,以為圓心為半徑作,試問:當(dāng)的長改變時,點與的位置關(guān)系變化嗎?若不變化,請說明具體的位置關(guān)系,并證明你的結(jié)論;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請把下面證明過程補充完整
如圖,已知AD⊥BC于D,點E在BA的延長線上,EG⊥BC于C,交AC于點F,∠E=∠1.求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G( ),
∴∠ADC=∠EGC=90°( ),
∴AD∥EG( ),
∴∠1=∠2( ),
∴_____=∠3( ),
又∵∠E=∠1(已知),∴∠2=∠3( ),
∴AD平分∠BAC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com