【題目】(滿分14分)現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點M,N.
(1)如圖1,若點O與點A重合,則OM與ON的數(shù)量關(guān)系是__________________;
(2)如圖2,若點O在正方形的中心(即兩對角線的交點),則(1)中的結(jié)論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?
(4)如圖4是點O在正方形外部的一種情況.當(dāng)OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結(jié)論.(不必說理)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEC中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是( )
A.BC=EC,∠B=∠E
B.BC=EC,AC=DC
C.BC=EC,∠A=∠D
D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=20cm,AC=12cm,點 P 從點 B 出發(fā)以每秒 3cm 的速度向點 A 運動,點 Q 從點 A 同時出發(fā)以每秒 2cm 的速度向點 C 運動,其中一個動點到達端點時,另一個動點也隨之停止運動,當(dāng)△APQ 是以 PQ 為底的等腰三角形時,運動的時間是( )
A.2.5 秒
B.3 秒
C.3.5 秒
D.4 秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.(不寫解答過程,直接寫出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點A1的坐標(biāo)為 ;
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標(biāo)為 ;
(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長為 ;
(4)在x軸上找一點P,使PA+PB的值最小,則點P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A、B、C三點在格點上.
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1 , 并寫出點C1的坐標(biāo);
(2)畫出△ABC關(guān)于y軸對稱的△A2B2C2 , 并寫出點B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坐標(biāo)系中放置一菱形OABC , 已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2015次,點B的落點依次為B1 , B2 , B3 , …,則B2015的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y= 的圖象分別交于A、C兩點,已知點B與點D關(guān)于坐標(biāo)原點O成中心對稱,且點B的坐標(biāo)為(m , 0).其中m>0.
(1)四邊形ABCD的是 . (填寫四邊形ABCD的形狀)
(2)當(dāng)點A的坐標(biāo)為(n,3)時,四邊形ABCD是矩形,求mn的值.
(3)試探究:隨著k與m的變化,四邊形ABCD能不能成為菱形?若能,請直接寫出k的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com