【題目】如圖,在等腰中,,AD的角平分線,且,以點A為圓心,AD長為半徑畫弧EF,交AB于點E,交AC于點F

1)求由弧EF及線段FC、CB、BE圍成圖形(圖中陰影部分)的面積;

2)將陰影部分剪掉,余下扇形AEF,將扇形AEF圍成一個圓錐的側面,AEAF正好重合,圓錐側面無重疊,求這個圓錐的高h

【答案】1;(2.

【解析】

1)利用等腰三角形的性質得到,則可計算出,然后利用扇形的面積公式,利用由弧EF及線段FC、CB、BE圍成圖形(圖中陰影部分)的面積進行計算;(2)設圓錐的底面圓的半徑為r,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到,解得,然后利用勾股定理計算這個圓錐的高h

∵在等腰中,

,

AD的角平分線,

,

,

,

∴由弧EF及線段FC、CB、BE圍成圖形(圖中陰影部分)的面積.

2)設圓錐的底面圓的半徑為r,

根據題意得,解得,

這個圓錐的高

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ADBC中,AC=BC,∠ACB=90°, ADB=30°,AD=,CD=14, BD=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1l2l3l4,相鄰兩條平行線間的距離都是1,正方形ABCD的四個頂點分別在四條直線上,則正方形ABCD的面積為

A. B. 5C. 3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列(邊長為1)的網格中,已知的三個頂點,,在格點上,請分別按不同要求在網格中描出一個格點,并寫出點的坐標.

1)將繞點順時針旋轉,畫出旋轉后所得的三角形,點旋轉后落點為.

2)經過,,三點有一條拋物線,請找到點,使點也落在這條拋物線上.

3)經過,,三點有一個圓,請找到一個橫坐標為2的點,使點也落在這個圓上.

1)點的坐標為( ,

2)點的坐標為( ,

3)點的坐標為( ,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著技術的發(fā)展,人們對各類產品的使用充滿期待.某公司計劃在某地區(qū)銷售第一款產品,根據市場分析,該產品的銷售價格將隨銷售周期的變化而變化.設該產品在第為正整數(shù))個銷售周期每臺的銷售價格為元,之間滿足如圖所示的一次函數(shù)關系.

1)求之間的關系式;

2)設該產品在第個銷售周期的銷售數(shù)量為(萬臺),的關系可用來描述.根據以上信息,試問:哪個銷售周期的銷售收入最大?此時該產品每臺的銷售價格是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,則OF的長度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸于、兩點,交軸于點,點坐標為,以為直徑作,與拋物線交于軸上同一點,連接、.

1)求拋物線的解析式;

2)點延長線上一點,的平分線于點,連接,求直線的解析式;

3)在(2)的條件下,拋物線上是否存在點,使得?若存在,求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°AB=10,BC=6.點P從點A出發(fā),沿折線AB—BC向終點C運動,在AB上以每秒5個單位長度的速度運動,在BC上以每秒3個單位長度的速度運動.點Q從點C出發(fā),沿CA方向以每秒2個單位長度的速度運動.點P、Q兩點同時出發(fā),當點P停止時,點Q也隨之停止.設點P運動的時間為t秒.

1)求線段AC的長.

2)求線段BP的長.(用含t的代數(shù)式表示)

3)設APQ的面積為S,求St之間的函數(shù)關系式.

4)連結PQ,當PQABC的一邊平行或垂直時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點C在半圓O上,AB4cm,∠CAB60°,P是弧上的一個動點,連接AP,過C點作CDAPD,連接BD,在點P移動的過程中,BD的最小值是_____

查看答案和解析>>

同步練習冊答案