【題目】如圖,如圖,在ABC中,C=90°,BAC的平分線交BC于點(diǎn)D,點(diǎn)OAB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,交AC于點(diǎn)E,交AB于點(diǎn)F

1)求證:BC是⊙O的切線;

2)若BD=,BF=2,求陰影部分的面積    (直接填空)

【答案】1證明見(jiàn)解析;(2

【解析】

1)連接OD,利用角平分線和平行線之間的角度關(guān)系,得到OD//AC,所以ODBC,從而得出BC與⊙O相切;

2)利用直角三角形的勾股定理解得圓的半徑,將陰影部分的面積轉(zhuǎn)化為三角形面積與扇形面積之差,從而計(jì)算出陰影部分的面積.

1證明:如圖,連接OD,

OA=OD,

∴∠OAD=ODA

AD平分∠BAC

∴∠CAD=OAD,

∴∠CAD=ODA

ACOD,

∴∠ODB=C=90°

OD是⊙O的半徑,

BC是⊙O的切線;

2設(shè)⊙O的半徑為r,則OD=rOB=r+2,

由(1)可知∠BDO=90°,

RtBDO中,根據(jù)勾股定理可得:OD2+BD2=OB2,

r2+2=(r+2)2,

解得:r=2,

RtBOD中,tanBOD=,

∴∠BOD=60°,

故陰影部分的面積為:

S陰影=SOBD-S扇形DOF=×OD×BD-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將等腰三角形折疊,使頂點(diǎn)與底邊的中點(diǎn)重合,折線分別交、于點(diǎn)、,連接、

1)如圖1,求證:四邊形是菱形;

2)如圖2,延長(zhǎng)至點(diǎn),使,連接,并延長(zhǎng)的延長(zhǎng)線于點(diǎn),在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中的所有平行四邊形(不包括以為一邊的平行四邊形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=﹣x2x+2與x軸交于點(diǎn)A,B兩點(diǎn),交y軸于C點(diǎn),拋物線的對(duì)稱軸與x軸交于H點(diǎn),分別以OC、OA為邊作矩形AECO

(1)求直線AC的解析式;

(2)如圖2,P為直線AC上方拋物線上的任意一點(diǎn),在對(duì)稱軸上有一動(dòng)點(diǎn)M,當(dāng)四邊形AOCP面積最大時(shí),求|PMOM|的最大值.

(3)如圖3,將△AOC沿直線AC翻折得△ACD,再將△ACD沿著直線AC平移得△A'CD'.使得點(diǎn)A′、C'在直線AC上,是否存在這樣的點(diǎn)D′,使得△AED′為直角三角形?若存在,請(qǐng)求出點(diǎn)D′的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適,甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品千克.

1)請(qǐng)分別寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用(元)與(千克)之間的函數(shù)關(guān)系式;

2)若小明快遞的物品超過(guò)1千克,則他應(yīng)選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,以下列結(jié)論正確的是(  )

;;(m為任意實(shí)數(shù))

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“南昌之星”摩天輪,位于江西省南昌市紅谷灘新區(qū)紅角洲贛江邊上的贛江市民公園,摩天輪高(最高點(diǎn)到地面的距離).如圖,點(diǎn)是摩天輪的圓心,是其垂直于地面的直徑,小賢在地面點(diǎn)處利用測(cè)角儀測(cè)得摩天輪的最高點(diǎn)的仰角為,測(cè)得圓心的仰角為,則摩天輪的半徑為________(結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線=為任意實(shí)數(shù))

1)無(wú)論取何值,拋物線恒過(guò)兩點(diǎn)________,________

2)當(dāng)時(shí),設(shè)拋物線在第一象限依次經(jīng)過(guò)整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))為.將拋物線沿直線平移,平移后的拋物線記為,拋物線經(jīng)過(guò)點(diǎn)的頂點(diǎn)為,例如時(shí),拋物線經(jīng)過(guò)點(diǎn)頂點(diǎn)為

拋物線的解析式為________;頂點(diǎn)坐標(biāo)為________

在拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo),并判斷四邊形的形狀;若不存在,請(qǐng)說(shuō)明理由.

直接寫出線段的長(zhǎng)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年4月,過(guò)敏體質(zhì)檢測(cè)中心等機(jī)構(gòu)開(kāi)展了青少年形體測(cè)評(píng),專家組隨機(jī)抽查了某市若干名初中生坐姿、站姿、走姿的好壞情況.我們對(duì)專家的測(cè)評(píng)數(shù)據(jù)作了適當(dāng)處理(如果一個(gè)學(xué)生有一種以上不良姿勢(shì),我們以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中所給信息解答些列問(wèn)題:

1)請(qǐng)將兩幅圖補(bǔ)充完整;

2)如果全市有10萬(wàn)名初中生,那么全市初中生中,三姿良好的學(xué)生約有   人.

3)根據(jù)統(tǒng)計(jì)結(jié)果,請(qǐng)你簡(jiǎn)單談?wù)勛约旱目捶ǎ?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購(gòu)買若干個(gè)籃球和足球(每個(gè)籃球的價(jià)格相同,每個(gè)足球的價(jià)格也相同).若購(gòu)買個(gè)籃球和個(gè)足球共需元,購(gòu)買個(gè)籃球和個(gè)足球共需元.

1)購(gòu)買一個(gè)籃球、一個(gè)足球各需多少元?

2)根據(jù)該中學(xué)的實(shí)際情況,需從體育用品商店一次性購(gòu)買籃球和足球共個(gè).要求購(gòu)買總金額不能超過(guò)元,則最多能購(gòu)買多少個(gè)籃球?

查看答案和解析>>

同步練習(xí)冊(cè)答案