如圖,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,對(duì)角線AC、BD交于點(diǎn)H.平行于線段BD的兩條直線MN、RQ同時(shí)從點(diǎn)A出發(fā),沿AC方向向點(diǎn)C勻速平移,分別交等腰梯形ABCD的邊于M、N和R、Q,分別交對(duì)角線AC于F、G,當(dāng)直線RQ到達(dá)點(diǎn)C時(shí),兩直線同時(shí)停止移動(dòng).記等腰梯形ABCD被直線MN掃過的面積為,被直線RQ掃過的面積為,若直線MN平移的速度為1單位/秒,直線RQ平移的速度為2單位/秒,設(shè)兩直線移動(dòng)的時(shí)間為x秒.
(1)填空:∠AHB=____________;AC=_____________;
(2)若,求x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在如圖3的極坐標(biāo)系中,線段OB、OC、OA的長度分別是1、2.5、3,且OC平分∠AOB.A點(diǎn)極坐標(biāo)為(3,30°),B點(diǎn)極坐標(biāo)
為(1,120°),則C點(diǎn)極坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AB=2,BC=3.6,∠B=60°,將△ABC繞點(diǎn)A按順時(shí)針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在BC邊上時(shí),則CD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A,B的坐標(biāo)分別是A(3,3)、B(1,2),△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△.
(1)畫出△,直接寫出點(diǎn),的坐標(biāo);
(2)在旋轉(zhuǎn)過程中,點(diǎn)B經(jīng)過的路徑的長;
(3)求在旋轉(zhuǎn)過程中,線段AB所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知點(diǎn)P是二次函數(shù)y=-x2+3x圖象在y軸右側(cè)部分上的一個(gè)動(dòng)點(diǎn),將直線y=-2x沿y軸向上平移,分別交x軸、y軸于A、B兩點(diǎn). 若以AB為直角邊的△PAB與△OAB相似,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為-8.
(1)求該拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PE⊥AB于點(diǎn)E.設(shè)△PDE的周長為l,
點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,設(shè)三角形ABC為一等腰直角三角形,角ABC為直角,D為AC中點(diǎn)。以B為圓心,AB為半徑作一圓弧AFC,以D為中心,AD為半徑,作一半圓AGC,作正方形BDCE。月牙形AGCFA的面積與正方形BDCE的面積大小關(guān)系( )
A、S月牙=S 正方形B、S月牙=S 正方形 C、S月牙=S 正方形 D、S月牙=2S 正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列語句中,屬于命題的是( )
(A) 作線段的垂直平分線 (B) 等角的補(bǔ)角相等嗎
(C) 平行四邊形是軸對(duì)稱圖形 (D) 用三條線段去拼成一個(gè)三角形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com