【題目】如圖,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,
(1)求證:BF=EF;(2)求∠EFC的度數(shù).
【答案】(1)證明見解析;(2)45°.
【解析】試題分析:(1)由AB=AC,AF⊥BC,可知BF=CF,再由BE⊥AC 根據(jù)直角三角形斜邊中線等于斜邊一半可得BF=EF,從而得到BF=EF;
(2)先根據(jù)線段垂直平分線的性質(zhì)及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性質(zhì)得出∠ABC的度數(shù),由BF=EF,再根據(jù)三角形外角的性質(zhì)即可得出結(jié)論.
試題解析:(1)∵AB=AC,AF⊥BC,
∴BF=CF,
∵BE⊥AC,
∴∠BEC=90°,即△BCE是直角三角形,
∴BF=EF;
(2)∵DE垂直平分AB,
∴AE=BE,
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAC=∠ABE=45°,
又∵AB=AC,
∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°,
∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,
∵BF=EF,
∴∠BEF=∠CBE=22.5°,
∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將五個邊長都為2cm的正方形按如圖所示擺放,點A、B、C、D分別是四個正方形的中心,則圖中四塊陰影面積的和為( )
A.2cm2 B.4cm2 C.6cm2 D.8cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】判斷下列線段是否成比例,若是,請寫出比例式.
(1)a=3 m,b=5 m,c=4.5 cm,d=7.5 cm;
____________________
(2)a=7 cm,b=4 cm,c=d=2 cm;
____________________
(3)a=1.1 cm,b=2.2 cm,c=3.3 cm,d=5.5 cm.
____________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知2輛A型車和1輛B型車載滿貨物一次可運貨10噸.用1輛A型車和2輛B型車載滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b輛,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:
(1)1輛A型車和1輛B型車載滿貨物一次分別可運貨物多少噸?
(2)請幫助物流公司設(shè)計租車方案
(3)若A型車每輛車租金每次100元,B型車每輛車租金每次120元.請選出最省錢的租車方案,并求出最少的租車費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,點A的坐標為(2,4),點B的坐標為(2,7) ,直線l經(jīng)過A點且平行于x
軸,直線l上的動點C從A點出發(fā)以每秒4個單位的速度沿直線l運動.若在x軸上有兩點D、E,
連接DB、OB,連接EC、OC,滿足DB=OB,EC=OC,設(shè)點C運動時間t秒,
(1) 如圖1,若動點C從A點出發(fā)向左運動,當(dāng)t=1秒時,
①求線段BC的長和點E的坐標;
②求此時DE與AC的數(shù)量關(guān)系?
(2)探究:動點C在直線l運動,無論t取何值,是否都存在上述(1)②中的數(shù)量關(guān)系? 若存在,請證明;若不存在,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,CD⊥AB,垂足為點D,已知AC=3,BC=4.
(1)線段AD,CD,CD,BD是不是成比例線段?寫出你的理由;
(2)在這個圖形中,能否再找出其他成比例的四條線段?如果能,請至少寫出兩組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角坐標系中,A、B、D三點的坐標分別為A(8,0),B(0,4),D(﹣1,0),點C與點B關(guān)于x軸對稱,連接AB、AC.
(1)求過A、B、D三點的拋物線的解析式;
(2)有一動點E從原點O出發(fā),以每秒2個單位的速度向右運動,過點E作x軸的垂線,交拋物線于點P,交線段CA于點M,連接PA、PB,設(shè)點E運動的時間為t(0<t<4)秒,求四邊形PBCA的面積S與t的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)拋物線的對稱軸上是否存在一點H,使得△ABH是直角三角形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A為函數(shù) 圖象上一點,連結(jié)OA,交函數(shù) 的圖象于點B,點C是x軸上一點,且AO=AC,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com