【題目】如圖,已知△ABC中,∠ACB=90°,CD⊥AB,垂足為點D,已知AC=3,BC=4.
(1)線段AD,CD,CD,BD是不是成比例線段?寫出你的理由;
(2)在這個圖形中,能否再找出其他成比例的四條線段?如果能,請至少寫出兩組.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB和CD相交于點O,在∠COB的內部作射線OE.
(1)若∠AOC=36°,∠COE=90°,求∠BOE的度數(shù);
(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】西瓜經(jīng)營戶以2元/千克的價格購進一批小型西瓜,以3元/千克的價格出售,每天可售出200千克.為了促銷,該經(jīng)營戶決定降價銷售.經(jīng)調查發(fā)現(xiàn),這種小型西瓜每降價0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,為了減少庫存,該經(jīng)營戶要想每天盈利200元,應將每千克小型西瓜的售價降低( )元.
A.0.2或0.3
B.0.4
C.0.3
D.0.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,
(1)求證:BF=EF;(2)求∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=3,BC=4,點D是AB的中點,點E在DC的延長線上,且CE=CD,過點B作BF∥DE交AE的延長線于點F,交AC的延長線于點G.
(1)求證:AB=BG;
(2)若點P是直線BG上的一點,試確定點P的位置,使△BCP與△BCD相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′交AD于點E.
(1)若∠DBC=25°,求∠ADC′的度數(shù);
(2)若AB=4,AD=8,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當△DCE旋轉至點A,D,E在同一直線上,連接BE.
填空:① ∠AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關系是______.
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.
(3)探究發(fā)現(xiàn):
圖1中的△ACB和△DCE,在△DCE旋轉過程中當點A,D,E不在同一直線上時,設直線AD與BE相交于點O,試在備用圖中探索∠AOE的度數(shù),直接寫出結果,不必說明理由.
【答案】(1)60°.AD=BE;(2)AB=17;(3)∠AOE的度數(shù)是60°或120°.
【解析】試題分析:(1)由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).
(2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由△DCE為等腰直角三角形及CM為△DCE中DE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE.
(3)由(1)知△ACD≌△BCE,得∠CAD=∠CBE,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根據(jù)三角形的內角和定理可知∠AOE=60°.
試題解析:(1)①∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點A,D,E在同一直線上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC∠CED=60°.
故答案為:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案為:AD=BE.
(2)∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴AD=BE=AE-DE=8,∠ADC=∠BEC,
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°.
∵點A,D,E在同一直線上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC∠CED=90°.
∴AB==17;
(3)由(1)知△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠CAB=∠CBA=60°,
∴∠OAB+∠OBA=120°
∴∠AOE=180°120°=60°,
同理求得∠AOB=60°,
∴∠AOE=120°,
∴∠AOE的度數(shù)是60°或120°.
點睛:本題考查了等邊三角形的性質、等腰三角形的性質、直角三角形斜邊上的中線等于斜邊的一半、三角形全等的判定與性質等知識,考查了運用已有的知識和經(jīng)驗解決問題的能力.
【題型】解答題
【結束】
26
【題目】如圖,直線MN:y=-x+b與x軸交于點M(4,0),與y軸交于點N,長方形ABCD的邊AB在x軸上,AB=2,AD=1.長方形ABCD由點A與點O重合的位置開始,以每秒1個單位長度的速度沿x軸正方向作勻速直線運動,當點A與點M重合時停止運動.設長方形運動的時間為t秒,長方形ABCD與△OMN重合部分的面積為S.
(1)求直線MN的解析式;
(2)當t=1時,請判斷點C是否在直線MN上,并說明理由;
(3)請求出當t為何值時,點D在直線MN上;
(4)直接寫出在整個運動過程中S與t的函數(shù)關系式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有若干個橫坐標分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2), (2,2)···根據(jù)這個規(guī)律,第140個點的坐標為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com