【題目】(1)問題發(fā)現(xiàn):如圖1,ACBDCE均為等邊三角形,當DCE旋轉(zhuǎn)至點A,D,E在同一直線上,連接BE.

填空:① AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關系是______

(2)拓展研究:

如圖2,ACBDCE均為等腰三角形,且∠ACB=DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.

(3)探究發(fā)現(xiàn):

1中的ACBDCE,在DCE旋轉(zhuǎn)過程中當點A,D,E不在同一直線上時,設直線ADBE相交于點O,試在備用圖中探索∠AOE的度數(shù),直接寫出結(jié)果,不必說明理由.

【答案】160°AD=BE;(2AB=17;(3AOE的度數(shù)是60°120°

【解析】試題分析:1)由條件易證ACD≌△BCE,從而得到:AD=BE,ADC=BEC.由點A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).

2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由DCE為等腰直角三角形及CMDCEDE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE

3)由(1)知ACD≌△BCE,得∠CAD=CBE,由∠CAB=ABC=60°,可知∠EAB+ABE=120°,根據(jù)三角形的內(nèi)角和定理可知∠AOE=60°

試題解析:1ACBDCE均為等邊三角形,

CA=CB,CD=CE,ACB=DCE=60°.

∴∠ACD=BCE.

ACDBCE中,

,

ACDBCE(SAS).

∴∠ADC=BEC.

DCE為等邊三角形,

∴∠CDE=CED=60°.

∵點AD,E在同一直線上,

∴∠ADC=120°.

∴∠BEC=120°.

∴∠AEB=BECCED=60°.

故答案為:60°.

②∵ACDBCE,

AD=BE.

故答案為:AD=BE.

2ACBDCE均為等腰直角三角形,

CA=CB,CD=CE,ACB=DCE=90°.

∴∠ACD=BCE.

ACDBCE中,

,

ACDBCE(SAS).

AD=BE=AE-DE=8,ADC=BEC

DCE為等腰直角三角形,

∴∠CDE=CED=45°.

∵點A,DE在同一直線上,

∴∠ADC=135°.

∴∠BEC=135°.

∴∠AEB=BECCED=90°.

AB==17

31ACDBCE,

∴∠CAD=CBE,

∵∠CAB=CBA=60°

∴∠OAB+OBA=120°

∴∠AOE=180°120°=60°,

同理求得∠AOB=60°,

∴∠AOE=120°,

∴∠AOE的度數(shù)是60°120°.

點睛:本題考查了等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形全等的判定與性質(zhì)等知識,考查了運用已有的知識和經(jīng)驗解決問題的能力.

型】解答
結(jié)束】
26

【題目】如圖,直線MNy=-xbx軸交于點M40),與y軸交于點N,長方形ABCD的邊ABx軸上,AB2,AD1.長方形ABCD由點A與點O重合的位置開始,以每秒1個單位長度的速度沿x軸正方向作勻速直線運動,當點A與點M重合時停止運動.設長方形運動的時間為t秒,長方形ABCD與△OMN重合部分的面積為S

1)求直線MN的解析式;

2)當t1時,請判斷點C是否在直線MN上,并說明理由;

3)請求出當t為何值時,點D在直線MN上;

4)直接寫出在整個運動過程中St的函數(shù)關系式

【答案】(1)y=-x+4(2)t=1時,點C3,1)在直線MN3t=3時,點D在直線MN4S=

【解析】試題分析:(1)把點4,0)代入直線即可求得結(jié)果;

2)先求出當=1時點A運動的路程,即可得到點C的坐標,再代入直線MN的解析式即可判斷;

3)先得到運動開始時點D坐標,再令,得到此時點D的坐標即可判斷;

4)分、、、四種情況分析即可.

1直線軸交于點4,0

,解得

直線的解析式為;

2)如圖1,當=1時,點在直線上,

=1時,點A運動的路程為AO=1×1=1,

,

此時點C的坐標為(31

把點C的坐標代入直線MN的解析式

在直線上;

3)如圖2,點向右平移過程中縱坐標不變

由題意知,運動開始時點D坐標為(0,1

,解得

此時點D的坐標為(3,1

=3時,點在直線上;

4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,直線ABCD

(1)如圖1,點E在直線BD的左側(cè),猜想∠ABE、CDE、BED的數(shù)量關系,并證明你的結(jié)論;

(2)如圖2,點E在直線BD的左側(cè),BF、DF分別平分∠ABE、CDE,猜想∠BFD和∠BED的數(shù)量關系,并證明你的結(jié)論;

(3)如圖3,點E在直線BD的右側(cè),BF、DF分別平分∠ABE、CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關系的猜想是否仍成立?如果成立,請證明;如果不成立,請寫出你的猜想,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運貨10.1A型車和2B型車載滿貨物一次可運貨11.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運貨物多少噸?

2請幫助物流公司設計租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請選出最省錢的租車方案,并求出最少的租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠ACB=90°,CDAB,垂足為點D,已知AC=3,BC=4.

(1)線段AD,CD,CD,BD是不是成比例線段?寫出你的理由;

(2)在這個圖形中,能否再找出其他成比例的四條線段?如果能,請至少寫出兩組.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組: .請結(jié)合題意填空,完成本體的解法.

(1)解不等式(1),得________;

(2)解不等式(2),得________;

(3)把不等式 (1)和 (2)的解集在數(shù)軸上表示出來.

(4)原不等式的解集為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直角坐標系中,A、B、D三點的坐標分別為A8,0),B0,4),D(﹣1,0),點C與點B關于x軸對稱,連接AB、AC

1)求過A、B、D三點的拋物線的解析式;

2)有一動點E從原點O出發(fā),以每秒2個單位的速度向右運動,過點Ex軸的垂線,交拋物線于點P,交線段CA于點M,連接PA、PB,設點E運動的時間為t0t4)秒,求四邊形PBCA的面積St的函數(shù)關系式,并求出四邊形PBCA的最大面積;

3)拋物線的對稱軸上是否存在一點H,使得△ABH是直角三角形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行于y軸的動直線a的表達式為x=t,直線b的表達式為y=x,直線c的表達式為y=x+2且動直線a分別交直線b、c于點DEED的上方),Py軸上一個動點,且滿足PDE是等腰直角三角形,則點P的坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3,EF分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DABCAB邊上,且∠ACD=A

1)作∠BDC的平分線DE,交BC于點E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);

2)在(1)的條件下,判斷直線DE與直線AC的位置關系(不要求證明).

查看答案和解析>>

同步練習冊答案