【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當△DCE旋轉(zhuǎn)至點A,D,E在同一直線上,連接BE.
填空:① ∠AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關系是______.
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.
(3)探究發(fā)現(xiàn):
圖1中的△ACB和△DCE,在△DCE旋轉(zhuǎn)過程中當點A,D,E不在同一直線上時,設直線AD與BE相交于點O,試在備用圖中探索∠AOE的度數(shù),直接寫出結(jié)果,不必說明理由.
【答案】(1)60°.AD=BE;(2)AB=17;(3)∠AOE的度數(shù)是60°或120°.
【解析】試題分析:(1)由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).
(2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由△DCE為等腰直角三角形及CM為△DCE中DE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE.
(3)由(1)知△ACD≌△BCE,得∠CAD=∠CBE,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根據(jù)三角形的內(nèi)角和定理可知∠AOE=60°.
試題解析:(1)①∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點A,D,E在同一直線上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC∠CED=60°.
故答案為:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案為:AD=BE.
(2)∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴AD=BE=AE-DE=8,∠ADC=∠BEC,
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°.
∵點A,D,E在同一直線上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC∠CED=90°.
∴AB==17;
(3)由(1)知△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠CAB=∠CBA=60°,
∴∠OAB+∠OBA=120°
∴∠AOE=180°120°=60°,
同理求得∠AOB=60°,
∴∠AOE=120°,
∴∠AOE的度數(shù)是60°或120°.
點睛:本題考查了等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形全等的判定與性質(zhì)等知識,考查了運用已有的知識和經(jīng)驗解決問題的能力.
【題型】解答題
【結(jié)束】
26
【題目】如圖,直線MN:y=-x+b與x軸交于點M(4,0),與y軸交于點N,長方形ABCD的邊AB在x軸上,AB=2,AD=1.長方形ABCD由點A與點O重合的位置開始,以每秒1個單位長度的速度沿x軸正方向作勻速直線運動,當點A與點M重合時停止運動.設長方形運動的時間為t秒,長方形ABCD與△OMN重合部分的面積為S.
(1)求直線MN的解析式;
(2)當t=1時,請判斷點C是否在直線MN上,并說明理由;
(3)請求出當t為何值時,點D在直線MN上;
(4)直接寫出在整個運動過程中S與t的函數(shù)關系式
【答案】(1)y=-x+4(2)t=1時,點C(3,1)在直線MN上(3)t=3時,點D在直線MN上(4)S=
【解析】試題分析:(1)把點(4,0)代入直線即可求得結(jié)果;
(2)先求出當=1時點A運動的路程,即可得到點C的坐標,再代入直線MN的解析式即可判斷;
(3)先得到運動開始時點D坐標,再令,得到此時點D的坐標即可判斷;
(4)分、、、四種情況分析即可.
(1)∵直線與軸交于點(4,0)
∴,解得
∴直線的解析式為;
(2)如圖1,當=1時,點在直線上,
當=1時,點A運動的路程為AO=1×1=1,
又∵,
∴此時點C的坐標為(3,1)
把點C的坐標代入直線MN的解析式
∵
∴點在直線上;
(3)如圖2,點向右平移過程中縱坐標不變
由題意知,運動開始時點D坐標為(0,1)
令,解得
此時點D的坐標為(3,1)
∴;
即=3時,點在直線上;
(4).
科目:初中數(shù)學 來源: 題型:
【題目】已知,直線AB∥CD
(1)如圖1,點E在直線BD的左側(cè),猜想∠ABE、∠CDE、∠BED的數(shù)量關系,并證明你的結(jié)論;
(2)如圖2,點E在直線BD的左側(cè),BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關系,并證明你的結(jié)論;
(3)如圖3,點E在直線BD的右側(cè),BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關系的猜想是否仍成立?如果成立,請證明;如果不成立,請寫出你的猜想,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知2輛A型車和1輛B型車載滿貨物一次可運貨10噸.用1輛A型車和2輛B型車載滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b輛,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:
(1)1輛A型車和1輛B型車載滿貨物一次分別可運貨物多少噸?
(2)請幫助物流公司設計租車方案
(3)若A型車每輛車租金每次100元,B型車每輛車租金每次120元.請選出最省錢的租車方案,并求出最少的租車費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,CD⊥AB,垂足為點D,已知AC=3,BC=4.
(1)線段AD,CD,CD,BD是不是成比例線段?寫出你的理由;
(2)在這個圖形中,能否再找出其他成比例的四條線段?如果能,請至少寫出兩組.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組: .請結(jié)合題意填空,完成本體的解法.
(1)解不等式(1),得________;
(2)解不等式(2),得________;
(3)把不等式 (1)和 (2)的解集在數(shù)軸上表示出來.
(4)原不等式的解集為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直角坐標系中,A、B、D三點的坐標分別為A(8,0),B(0,4),D(﹣1,0),點C與點B關于x軸對稱,連接AB、AC.
(1)求過A、B、D三點的拋物線的解析式;
(2)有一動點E從原點O出發(fā),以每秒2個單位的速度向右運動,過點E作x軸的垂線,交拋物線于點P,交線段CA于點M,連接PA、PB,設點E運動的時間為t(0<t<4)秒,求四邊形PBCA的面積S與t的函數(shù)關系式,并求出四邊形PBCA的最大面積;
(3)拋物線的對稱軸上是否存在一點H,使得△ABH是直角三角形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行于y軸的動直線a的表達式為x=t,直線b的表達式為y=x,直線c的表達式為y=﹣x+2,且動直線a分別交直線b、c于點D、E(E在D的上方),P是y軸上一個動點,且滿足△PDE是等腰直角三角形,則點P的坐標是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在△ABC的AB邊上,且∠ACD=∠A.
(1)作∠BDC的平分線DE,交BC于點E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,判斷直線DE與直線AC的位置關系(不要求證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com