【題目】如圖,一艘輪船位于燈塔P南偏西60°方向的A處,它向東航行20海里到達(dá)燈塔P南偏西45°方向上的B處,若輪船繼續(xù)沿正東方向航行,求輪船航行途中與燈塔P的最短距離.(結(jié)果保留根號(hào))

【答案】(1010)海里

【解析】

利用題意得到ACPC,∠APC=60°,∠BPC=45°,AB=20海里,如圖,設(shè)BC=x海里,則AC=AB+BC=20+x)海里.解PBC,得出PC=BC=x海里,解RtAPC,得出AC=PCtan60°=x,根據(jù)AC不變列出方程x=20+x,解方程即可.

如圖,ACPC,∠APC=60°,∠BPC=45°,AB=20海里,設(shè)BC=x海里,則AC=AB+BC=20+x)海里.

PBC中,∵∠BPC=45°,

∴△PBC為等腰直角三角形,

PC=BC=x海里,

RtAPC中,∵tanAPC=,

AC=PCtan60°=x,

x=20+x,

解得x=10+10

PC=10+10)海里.

答:輪船航行途中與燈塔P的最短距離是(10+10)海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,已知∠ABC90o,在AB上取一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE2cm,AD4cm

(1)求⊙O的直徑BE的長(zhǎng);

(2)計(jì)算ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點(diǎn)E,PCD的周長(zhǎng)為12,∠APB=60°

求:(1PA的長(zhǎng);

2)∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).

(1)畫出ABC關(guān)于y軸對(duì)稱的圖形A1B1C1,并直接寫出C1點(diǎn)坐標(biāo);

(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫出ABC放大后的圖形A2B2C2,并直接寫出C2點(diǎn)坐標(biāo);

(3)如果點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫出經(jīng)過(2)的變化后D的對(duì)應(yīng)點(diǎn)D2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是置于水平地面上的一個(gè)球形儲(chǔ)油罐,小敏想測(cè)量它的半徑、在陽(yáng)光下,他測(cè)得球的影子的最遠(yuǎn)點(diǎn)A到球罐與地面接觸點(diǎn)B的距離是10(如示意圖,AB10);同一時(shí)刻,他又測(cè)得豎直立在地面上長(zhǎng)為1米的竹竿的影子長(zhǎng)為2米,那么,球的半徑是________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的半徑為4BO外一點(diǎn),連接OB,且OB=6,過點(diǎn)BO的切線BD,切點(diǎn)為D,延長(zhǎng)BOO于點(diǎn)A,過點(diǎn)A作切線BD的垂線,垂足為C

1)求證:AD平分BAC;

2)求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C=90°,AC=3cmBC=4cm,以C為圓心,r為半徑的圓與AB有何位置關(guān)系?(1) r=2cm(2) r=2.4cm;(3) r=3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形OABC中,BC∥AO,∠AOC=90°,點(diǎn)A,B的坐標(biāo)分別為(5,0), (2,6),點(diǎn)D為AB上一點(diǎn),且BD=2AD,雙曲線y=(k>0)經(jīng)過點(diǎn)D,交BC于點(diǎn)E.

(1)求雙曲線的解析式;

(2)求四邊形ODBE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),ADAB,AD,BC的延長(zhǎng)線相交于點(diǎn)E.

(1)求證:AD是半圓O的切線;

(2)連結(jié)CD,求證:∠A=2∠CDE;

查看答案和解析>>

同步練習(xí)冊(cè)答案