精英家教網 > 初中數學 > 題目詳情
已知兩條線段的長度分別為2cm、8cm,下列能與它們構成三角形的線段長度為(*)
A.4cmB.6cmC.8cmD.10cm
C解析:
根據三角形的三邊關系,得:第三邊應>兩邊之差,即8-2=6;而<兩邊之和,即8+2=10.
下列答案中,只有8符合條件.故選C
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•臺州)定義:P、Q分別是兩條線段a和b上任意一點,線段PQ的長度的最小值叫做線段a與線段b的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標系中四點.
(1)根據上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離是
2
2
;當m=5,n=2時,如圖2,線段BC與線段OA的距離為
5
5
;
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數解析式.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M,
①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•東城區(qū)二模)定義:P,Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段a與線段b的距離.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標系中的四點.
(1)根據上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離是
2
2
;
當m=5,n=2時,如圖2,線段BC與線段OA的距離是
5
5

(2)如圖3,若點B落在圓心為A,半徑為2的圓上,求線段BC與線段OA的距離d.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,若線段BC的中點為M,直接寫出點M隨線段BC運動所形成的圖形的周長
16+4π
16+4π

查看答案和解析>>

科目:初中數學 來源: 題型:

定義:P、Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段a與線段b的距離.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點.根據上述定義,

(1)當m=2,n=2時,如圖1,線段BC與線段OA的距離是
2
2
,
(2)當m=5,n=2時,如圖2,線段BC與線段OA的距離(即線段AB的長)為
5
5

(3)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數解析式.

查看答案和解析>>

科目:初中數學 來源:2012年初中畢業(yè)升學考試(浙江臺州卷)數學(帶解析) 題型:解答題

定義:P、Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段與線段的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點.
(1)根據上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離是_____,
當m=5,n=2時,如圖2,線段BC與線段OA的距離(即線段AB的長)為______

(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數解析式.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M.
①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點的三角形與△AOD相似,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2012年初中畢業(yè)升學考試(浙江臺州卷)數學(解析版) 題型:解答題

定義:P、Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段與線段的距離.

已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點.

(1)根據上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離是_____,

當m=5,n=2時,如圖2,線段BC與線段OA的距離(即線段AB的長)為______

 (2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數解析式.

(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M.

①求出點M隨線段BC運動所圍成的封閉圖形的周長;

②點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點的三角形與△AOD相似,若存在,求出m的值;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案