【題目】如圖,在邊長為4的正方形ABCD中,PBC邊上一動點(不含BC兩點),將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PECD于點N,連接MA,NA.則以下結(jié)論中正確的有(

①△CMP∽△BPA;

四邊形AMCB的面積最大值為10;

當(dāng)PBC中點時,AE為線段NP的中垂線;

線段AM的最小值為2

⑤當(dāng)ABP≌△ADN時,BP= 4-4

A. 1B. 2C. 4D. 3

【答案】D

【解析】

根據(jù)相似三角形的判定和性質(zhì)逐個分析即可. AB=CB=DC=AD=4,∠C=B=90°,得△CMP∽△BPA,故①正確;當(dāng)x=2時,四邊形AMCB面積最大值為10,故②正確;NE≠EP,故③錯誤;AM的最小值==5,故④錯誤;PB=故⑤正確.

∵∠APB=APE,∠MPC=MPN,∵∠CPN+NPB=180°,∴2NPM+2APE=180°,∴∠MPN+APE=90°,∴∠APM=90°,∵∠CPM+APB=90°,∠APB+PAB=90°,∴∠CPM=PAB,∵四邊形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=B=90°,∴△CMP∽△BPA.故①正確,設(shè)PB=x,則CP=4x,∵△CMP∽△BPA,∴,∴CM=x4x),∴S四邊形AMCB=[4+x4x]×4==,∴x=2時,四邊形AMCB面積最大值為10,故②正確,當(dāng)PB=PC=PE=2時,設(shè)ND=NE=y,在RtPCN中,解得,∴NE≠EP,故③錯誤,作MGABG,∵AM==,∴AG最小時AM最小,∵AG=ABBG=ABCM=4x4x=,∴x=1時,AG最小值=3,∴AM的最小值==5,故④錯誤.∵△ABP≌△ADN時,∴∠PAB=DAN=22.5°,在AB上取一點K使得AK=PK,設(shè)PB=z,∴∠KPA=KAP=22.5°.∵∠PKB=KPA+KAP=45°,∴∠BPK=BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=,∴PB=故⑤正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ABC=90°,AO是△ABC的角平分線,以O為圓心,OB為半徑作圓交BC于點D

1)求證:直線AC是⊙O的切線;

2)在圖2中,設(shè)AC與⊙O相切于點E,連結(jié)BE,如果AB=4tanCBE=

①求BE的長;②求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,ADBC,AD2ABBC8,CD10

(1)求梯形ABCD的面積S

(2)動點P從點B出發(fā),以1cm/s的速度,沿BADC方向,向點C運動;動點Q從點C出發(fā),以1cm/s的速度,沿CDA方向,向點A運動,過點QQEBC于點E.若P、Q兩點同時出發(fā),當(dāng)其中一點到達(dá)目的地時整個運動隨之結(jié)束,設(shè)運動時間為t秒.問:

①當(dāng)點PBA上運動時,是否存在這樣的t,使得直線PQ將梯形ABCD的周長平分?若存在,請求出t的值;若不存在,請說明理由;

②在運動過程中,是否存在這樣的t,使得以P、A、D為頂點的三角形與△CQE相似?若存在,請求出所有符合條件的t的值;若不存在,請說明理由;

③在運動過程中,是否存在這樣的t,使得以P、D、Q為頂點的三角形恰好是以DQ為一腰的等腰三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC⊙O于點E,∠ABC的平分線BFAD于點F,交BC于點D

1)求證:BEEF;

2)若DE4DF3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,點EBC上的一個動點,EFAECD于點F,以AE,EF為邊作矩形AEFG,若AB=4,則點GAD距離的最大值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD中,∠B60°,動點P以每秒1個單位的速度自點A出發(fā)沿線段AB運動到點B,同時動點Q以每秒2個單位的速度自點B出發(fā)沿折線BCD運動到點D.圖2是點P、Q運動時,BPQ的面積S隨時間t變化關(guān)系圖象,則a的值是( 。

A.2B.2.5C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備購進(jìn)一批產(chǎn)品進(jìn)行銷售,該產(chǎn)品的進(jìn)貨單價為6/個.根據(jù)市場調(diào)查,該產(chǎn)品的日銷售量y(個)與銷售單價x(元/個)之間滿足一次函數(shù)關(guān)系.關(guān)于日銷售量y(個)與銷售單價x(元/個)的幾組數(shù)據(jù)如表:

x

10

12

14

16

y

300

240

180

m

1)求出yx之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)及m的值.

2)按照(1)中的銷售規(guī)律,當(dāng)銷售單價定為17.5/個時,日銷售量為   個,此時,獲得日銷售利潤是   

3)為防范風(fēng)險,該公司將日進(jìn)貨成本控制在900(含900元)以內(nèi),按照(1)中的銷售規(guī)律,要使日銷售利潤最大,則銷售單價應(yīng)定為多少?并求出此時的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y1ax2+b經(jīng)過C(﹣2,4),D(﹣44)兩點.

1)求拋物線y1的函數(shù)表達(dá)式;

2)將拋物線y1沿x軸翻折,再向右平移,得到拋物線y2,與y2軸交于點F,點E為拋物線2上一點,要使以CD為邊,C、D、EF四點為頂點的四邊形為平行四邊形,求所有滿足條件的拋物線y2的函表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A-2,m)繞坐標(biāo)原點O順時針旋轉(zhuǎn)90°后,恰好落在圖中⊙P中的陰影區(qū)域(包括邊界)內(nèi),⊙P的半徑為1,點P的坐標(biāo)為(32),則m的取值范圍是______

查看答案和解析>>

同步練習(xí)冊答案