【題目】如圖,某住宅小區(qū)在施工過(guò)程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測(cè)量,在四邊形ABCD中,AB3 m,BC4 mCD12 m,DA13 m,∠B90°.小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米30元,試問(wèn)鋪滿(mǎn)這塊空地共需花費(fèi)多少元?

【答案】1080元.

【解析】

連接AC,先根據(jù)勾股定理求出AC的長(zhǎng),然后利用勾股定理的逆定理證明△ACD為直角三角形.從而用求和的方法求面積,進(jìn)而可得出需要的費(fèi)用.

解:連接AC,

則由勾股定理得AC==5m,

AC2+DC2= ,

又∵AD2= =169,
AC2+DC2=AD2,
∴∠ACD=90°
這塊草坪的面積=SRtABC+SRtACD= .

故需要的費(fèi)用為36×30=1080元.
答:鋪滿(mǎn)這塊空地共需花費(fèi)1080元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DEDC,BC的中點(diǎn).

(1)觀(guān)察猜想

1中,線(xiàn)段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是

(2)探究證明

ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說(shuō)明理由;

(3)拓展延伸

ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技進(jìn)步,無(wú)人機(jī)的應(yīng)用越來(lái)越廣,如圖1,在某一時(shí)刻,無(wú)人機(jī)上的探測(cè)器顯示,從無(wú)人機(jī)A處看一棟樓頂部B點(diǎn)的仰角和看與頂部B在同一鉛垂線(xiàn)上高樓的底部C的俯角.

(1)如果上述仰角與俯角分別為30°60°,且該樓的高度為30米,求該時(shí)刻無(wú)人機(jī)的豎直高度CD;

(2)如圖2,如果上述仰角與俯角分別為αβ,且該樓的高度為m米.求用α、β、m表示該時(shí)刻無(wú)人機(jī)的豎直高度CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新知學(xué)習(xí),若一條線(xiàn)段把一個(gè)平面圖形分成面積相等的兩部分,我們把這條段線(xiàn)做該平面圖形的二分線(xiàn)解決問(wèn)題:

1三角形的中線(xiàn)、高線(xiàn)、角平分線(xiàn)中,一定是三角形的二分線(xiàn)的是_______

如圖1,已知ABC中,ADBC邊上的中線(xiàn),點(diǎn)E,F分別在AB,DC上,連接EF,與AD交于點(diǎn)G,若EF_____(不是”)△ABC的一條二分線(xiàn).并說(shuō)明理由.

(2)如圖2,四邊形ABCD中,CD平行于AB,點(diǎn)GAD的中點(diǎn),射線(xiàn)CG交射線(xiàn)BA于點(diǎn)E,取EB的中點(diǎn)F,連接CF.求證:CF是四邊形ABCD的二分線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線(xiàn)AD折疊,使它落在斜邊AB上,且與AE重合,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形紙片ABCD中, ,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)分別在邊上,則的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,甲、乙兩車(chē)分別從相距480kmA、B兩地相向而行,乙車(chē)比甲車(chē)先出發(fā)1小時(shí),并以各自的速度勻速行駛,甲車(chē)到達(dá)C地后因有事按原路原速返回A地.乙車(chē)從B地直達(dá)A地,兩車(chē)同時(shí)到達(dá)A地.甲、乙兩車(chē)距各自出發(fā)地的路程y(千米)與甲車(chē)出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖2,結(jié)合圖象信息解答下列問(wèn)題:

(1)乙車(chē)的速度是   千米/時(shí),乙車(chē)行駛的時(shí)間t=   小時(shí);

(2)求甲車(chē)C地按原路原速返回A地的過(guò)程中,甲車(chē)距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式;

(3)直接寫(xiě)出甲車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相距80千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,AB6,AC8,BC11,任作一條直線(xiàn)將△ABC分成兩個(gè)三角形,若其中有一個(gè)三角形是等腰三角形,則這樣的直線(xiàn)最多有(

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為6cm的等邊三角形,點(diǎn)DB點(diǎn)出發(fā)沿B→A方向在線(xiàn)段BA上以a cm/s速度運(yùn)動(dòng),與此同時(shí),點(diǎn)E從線(xiàn)段BC的某個(gè)端點(diǎn)出發(fā),以b cm/s速度在線(xiàn)段BC上運(yùn)動(dòng),當(dāng)D到達(dá)A點(diǎn)后,D、E運(yùn)動(dòng)停止,運(yùn)動(dòng)時(shí)間為t(秒).

(1)如圖1,若a=b=1,點(diǎn)EC出發(fā)沿C→B方向運(yùn)動(dòng),連AE、CD,AE、CD交于F,連BF.當(dāng)0t6時(shí):

①求∠AFC的度數(shù);

②求的值;

(2)如圖2,若a=1,b=2,點(diǎn)EB點(diǎn)出發(fā)沿B→C方向運(yùn)動(dòng),E點(diǎn)到達(dá)C點(diǎn)后再沿C→B方向運(yùn)動(dòng).當(dāng)t3時(shí),連DE,以DE為邊作等邊△DEM,使M、BDE兩側(cè),求M點(diǎn)所經(jīng)歷的路徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案