【題目】如圖,在中,已知,邊上一點(diǎn),,平分,分別交于點(diǎn),,連接.

1)若,求的度數(shù);

2)若,求證.

【答案】170°;30°;(2)見(jiàn)解析

【解析】

1)根據(jù)等邊對(duì)等角求出∠CAB和∠CBA的度數(shù),再根據(jù)等邊對(duì)等角求出∠BEC和∠BCE的度數(shù),從而可得出∠ACE的度數(shù),最后根據(jù)外角的性質(zhì)可求出∠BEC的度數(shù);再證明△BCF≌△BEF,從而得出∠BEF的度數(shù),最后得出∠FEC的度數(shù).

(2)先根據(jù)(1)中全等得出EF=CF,再由等角對(duì)等邊判定△AEF為等腰三角形,得出AE=EF,從而得出結(jié)果.

證明:(1)∵,

.

.

,

.

.

平分,∴∠CBF=EBF,

在△BCF和△BEF中,

∴△BCF≌△BEFSAS.

∴∠BEF=BCF=100°,.

∴∠FEC=BEF-BEC=30°.

2)由(1)可知,

.

,

.

.

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖PAB中,PA=PB,C、D是直線AB上兩點(diǎn),連接PC、PD.

(1)請(qǐng)?zhí)砑右粋(gè)條件:   ,使圖中存在兩個(gè)三角形全等.

(2)證明(1)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC的度數(shù)為(

A.120°B.108°C.110°D.102°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在2016CCTV英語(yǔ)風(fēng)采大賽中,婁底市參賽選手表現(xiàn)突出,成績(jī)均不低于60分.為了更好地了解婁底賽區(qū)的成績(jī)分布情況,隨機(jī)抽取利了其中200名學(xué)生的成績(jī)成績(jī)x取整數(shù),總分100分作為樣本進(jìn)行了整理,得到如圖的兩幅不完整的統(tǒng)計(jì)圖表:

根據(jù)所給信息,解答下列問(wèn)題:

1在表中的頻數(shù)分布表中,m= ,n=

成績(jī)

頻數(shù)

頻率

60≤x<70

60

0.30

70≤x<80

m

0.40

80≤x<90

40

n

90≤x≤100

20

0.10

2請(qǐng)補(bǔ)全圖中的頻數(shù)分布直方圖.

3按規(guī)定,成績(jī)?cè)?0分以上包括80分的選手進(jìn)入決賽.若婁底市共有4000人參數(shù),請(qǐng)估計(jì)約有多少人進(jìn)入決賽?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)方形紙片,沿對(duì)角線折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)為相交于點(diǎn),則下列結(jié)論中不一定正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn),

(1)求證:△ACE≌△BCD;

(2)若DE=13,BD=12,求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一期間,小紅到美麗的世界地質(zhì)公園湖光巖參加社會(huì)實(shí)踐活動(dòng),在景點(diǎn)P處測(cè)得景點(diǎn)B位于南偏東45°方向;然后沿北偏東60°方向走100到達(dá)景點(diǎn)A,此時(shí)測(cè)得景點(diǎn)B正好位于景點(diǎn)A的正南方向,求景點(diǎn)AB之間的距離.(結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別平分的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖直線yx+3與坐標(biāo)軸分別交于A,B兩點(diǎn)拋物線yax2bx-3a經(jīng)過(guò)點(diǎn)AB,頂點(diǎn)為C,連接CB并延長(zhǎng)交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱(chēng)軸MN對(duì)稱(chēng)

(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);

(2)求證四邊形ABCD是直角梯形

【答案】(1)y=-x2-2x+3,頂點(diǎn)C的坐標(biāo)為(-1,4);(2)證明見(jiàn)解析.

【解析】

1)解:∵yx3與坐標(biāo)軸分別交與A,B兩點(diǎn),∴A點(diǎn)坐標(biāo)(-3,0)、B點(diǎn)坐標(biāo)(0,3.

拋物線yax2bx3a經(jīng)過(guò)A,B兩點(diǎn),

解得

拋物線解析式為:y=-x22x3.

∵y=-x22x3=-(x124

頂點(diǎn)C的坐標(biāo)為(-1,4.

2)證明:∵B,D關(guān)于MN對(duì)稱(chēng),C(-1,4),B0,3),

∴D(-2,3.∵B0,3),A(-3,0),∴OAOB.

∠AOB90°∴∠ABO∠BAO45°.

∵B,D關(guān)于MN對(duì)稱(chēng),∴BD⊥MN.

∵M(jìn)N⊥x軸,∴BD∥x.

∴∠DBA∠BAO45°.

∴∠DBO∠DBA∠ABO45°45°90°.

設(shè)直線BC的解析式為ykxb,

B03),C(-1,4)代入得,

解得

∴y=-x3.

當(dāng)y0時(shí),-x30x3,∴E3,0.

∴OBOE,又∵∠BOE90°,

∴∠OEB∠OBE∠BAO45°.

∴∠ABE180°∠BAE∠BEA90°.

∴∠ABC180°∠ABE90°.

∴∠CBD∠ABC∠ABD45°.

∵CM⊥BD∴∠MCB45°.

∵B,D關(guān)于MN對(duì)稱(chēng),

∴∠CDM∠CBD45°,CD∥AB.

∵ADBC不平行,四邊形ABCD是梯形.

∵∠ABC90°,四邊形ABCD是直角梯形.

型】解答
結(jié)束】
21

【題目】有兩組卡片,第一組三張卡片上都寫(xiě)著A、BB,第二組五張卡片上都寫(xiě)著AB、BD、E.試用列表法求出從每組卡片中各抽取一張兩張都是B的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案