【題目】如圖,把一張長方形紙片,沿對角線折疊,點的對應點為,相交于點,則下列結論中不一定正確的是(

A.B.C.D.

【答案】D

【解析】

由折疊的性質可得∠BAC=CAB′,AD=BC=B'C,由平行線的性質和等腰三角形的性質可得∠ECA=EAC,AE=CE,由“HL”可證RtADERtCB'E,可得ED=EB',即可求解.

解:∵矩形紙片ABCD沿對角線AC折疊,點B的對應點為B′,
∴∠BAC=CAB′,AD=BC=B'C
ABCD,
∴∠BAC=ACD
∴∠ACD=CAB′,即∠ECA=EAC,
AE=CE,
故選項A,C不符合題意,
AE=CEAD=BC=B'C,
RtADERtCB'EHL
ED=EB'
故選項B不符合題意,
故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0)。

(1)求點B的坐標;

(2)已知,C為拋物線與y軸的交點。

若點P在拋物線上,且,求點P的坐標;

設點Q是線段AC上的動點,作QDx軸交拋物線于點D,求線段QD長度的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,P是對角線AC上的一點,點E在BC的延長線上,且PE=PB.

(1)求證:BCP≌△DCP;

(2)求證:DPE=ABC;

(3)把正方形ABCD改為菱形,其它條件不變(如圖),若ABC=58°,則DPE=   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y=(k≠0)與一次函數(shù)y=mx+b(m≠0)交于點A(1,2k﹣1).

(1)求反比例函數(shù)的解析式;

(2)若一次函數(shù)與x軸交于點B,且AOB的面積為3,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,,分別是線段、上的動點.

1)能否在線段上作出點E,在線段上作出點,使的周長最。______(用不能填空);

2)如果能,請你在圖中作出滿足條件的點、(不要求寫出作法),并直接寫出的度數(shù);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,已知,邊上一點,,平分,分別交,于點,,連接.

1)若,求的度數(shù);

2)若,求證.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠ABC的平分線與AC相交于點D,與⊙O過點A的切線相交于點E.

(1)∠ACB=   °,理由是:   ;

(2)猜想△EAD的形狀,并證明你的猜想;

(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究問題:已知,畫一個角,使,且于點.有怎樣的數(shù)量關系?

1)我們發(fā)現(xiàn)有兩種位置關系:如圖1與圖2所示.

①圖1數(shù)量關系為____________;圖2數(shù)量關系為____________.請選擇其中一種情況說明理由.

②由①得出一個真命題(用文字敘述):____________________________.

2)應用②中的真命題,解決以下問題:若兩個角的兩邊互相平行,且一個角比另一個角的2倍少30°,請直接寫出這兩個角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(4分)一元二次方程的根的情況是(

A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根

C.沒有實數(shù)根 D無法確定

【答案】A

【解析】

試題∵△=,方程有兩個不相等的實數(shù)根.故選A.

考點:根的判別式

型】單選題
束】
9

【題目】已知直線y=kx(k>0)與雙曲線交于點A(x1,y1),B(x2,y2)兩點,則x1y2+x2y1的值為【 】

A.﹣6 B.﹣9 C.0 D.9

查看答案和解析>>

同步練習冊答案