【題目】如下圖1,將三角板放在正方形上,使三角板的直角頂點(diǎn)與正方形的頂點(diǎn)重合,三角板的一邊交于點(diǎn).另一邊交的延長線于點(diǎn)

1)觀察猜想:線段與線段的數(shù)量關(guān)系是

2)探究證明:如圖2,移動三角板,使頂點(diǎn)始終在正方形的對角線上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給予證明:若不成立.請說明理由:

3)拓展延伸:如圖3,將(2)中的正方形改為矩形,且使三角板的一邊經(jīng)過點(diǎn),其他條件不變,若,求的值.

【答案】(1);(2)成立,證明過程見解析;(3).

【解析】

1)利用三角形全等的判定定理與性質(zhì)即可得;

2)如圖(見解析),過點(diǎn)分別作,垂足分別為,證明方法與題(1)相同;

3)如圖(見解析),過點(diǎn)分別作,垂足分別為,先同(2)求出,從而可證,由相似三角形的性質(zhì)可得,再根據(jù)平行線的性質(zhì)和相似三角形的性質(zhì)求出的值,即可得出答案.

1,理由如下:

由直角三角板和正方形的性質(zhì)得

中,

2)成立,證明如下:

如圖,過點(diǎn)分別作,垂足分別為,則四邊形是矩形

由正方形對角線的性質(zhì)得,的角平分線

中,

;

3)如圖,過點(diǎn)分別作,垂足分別為

同(2)可知,

由長方形性質(zhì)得:

,即

中,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂園的摩天輪(如圖1)有均勻分布在圓形轉(zhuǎn)輪邊緣的若干個座艙,人們坐在座艙中可以俯瞰美景,圖2是摩天輪的示意圖.摩天輪以固定的速度繞中心順時針方向轉(zhuǎn)動,轉(zhuǎn)一圈為分鐘.從小剛由登艙點(diǎn)進(jìn)入摩天輪開始計時,到第12分鐘時,他乘坐的座艙到達(dá)圖2中的點(diǎn)_________(,,),此點(diǎn)距地面的高度為_______m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時擲兩個質(zhì)地均勻的骰子,觀察向上一面的點(diǎn)數(shù),兩個骰子的點(diǎn)數(shù)相同的概率為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)yx2+2kx+k1(k為常數(shù)),下列說法正確的個數(shù)是( )

(1)對任意實數(shù)k,函數(shù)與x軸有兩個交點(diǎn)

(2)當(dāng)x≥k時,函數(shù)y的值都隨x的增大而增大

(3)k取不同的值時,二次函數(shù)y的頂點(diǎn)始終在同一條拋物線上

(4)對任意實數(shù)k,拋物線yx2+2kx+k1都必定經(jīng)過唯一定點(diǎn)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃山景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價為元,當(dāng)銷售單價定為元時,每天可以銷售.市場調(diào)查反映:銷售單價每提高元,日銷量將會減少.物價部門規(guī)定:銷售單價不低于元,但不能超過元,設(shè)該紀(jì)念品的銷售單價為(元),日銷量為(件).

1)直接寫出的函數(shù)關(guān)系式.

2)求日銷售利潤(元)與銷售單價(元)的函數(shù)關(guān)系式.并求當(dāng)為何值時,日銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.正方形的邊長為,點(diǎn)上,且.

如圖2.將線段繞點(diǎn)逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為,并以為邊作正方形,連接試問隨著線段的旋轉(zhuǎn),有怎樣的數(shù)量關(guān)系?說明理由;

如圖3,在的條件下,若點(diǎn)恰好落在線段上,求點(diǎn)走過的路徑長(保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,點(diǎn)在對角線上,延長于點(diǎn).

1)求證:

2)已知點(diǎn)在邊上,請以為邊,用尺規(guī)作一個相似,并使得點(diǎn).(只須作出一個,保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線yx24x+nx0)的圖象記為G1,將G1繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)180°得到圖象G2,圖象G1G2合起來記為圖象G

1)若點(diǎn)P(﹣12)在圖象G上,求n的值.

2)當(dāng)n=﹣1時.

①若Qt,1)在圖象G上,求t的值.

②當(dāng)kx≤3k3)時,圖象G對應(yīng)函數(shù)的最大值為5,最小值為﹣5,直接寫出k的取值范圍.

3)當(dāng)以A(﹣3,3)、B(﹣3,﹣1)、C2,﹣1)、D23)為頂點(diǎn)的矩形ABCD的邊與圖象G有且只有三個公共點(diǎn)時,直接寫出n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案