【題目】如圖,ABC在正方形網格中,若B(﹣3,﹣1),按要求回答下列問題:

1)在圖中建立正確的平面直角坐標系;

2)根據(jù)所建立的坐標系,寫出AC的坐標;

3)求ABC的周長.

【答案】1)如圖所示見解析;(2A0,3C11);(3)△ABC的周長為.

【解析】

1)由B點坐標可得B點向上平移1個單位長度再向右平移3個單位長度得到原點,即可確定平面直角坐標系;

2)由平面直角坐標系寫出點的坐標即可;

3)分別以AB、BC、CA為直角三角形的斜邊建立直角三角形,再利用勾股定理計算出三邊再求周長即可.

1)如圖所示:建立平面直角坐標系;

2)根據(jù)坐標系可得出:A03C1,1);

3)分別以AB、BC、CA為直角三角形的斜邊建立直角三角形:RtADC、RtCEB、 RtAFB,由勾股定理得:AC=,所以ABC的周長為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃建一間多功能數(shù)學實驗室,將采購兩類桌椅:A類是三角形桌,每桌可坐3人,B類是五邊形桌,每桌可坐5人.學校擬選擇甲、乙兩家公司中的一家來采購,兩家公司的標價均相同,且規(guī)定兩類桌椅均只能在同一家公司采購.甲公司對兩類桌椅均是以標價出售;乙公司對A類桌椅漲價20%、B類桌椅降價20%出售.經咨詢,兩家公司給出的數(shù)量和費用如下表:

A類桌椅(套)

B類桌椅(套)

總費用(元)

甲公司

6

5

1900

乙公司

3

7

1660

1)求第一次購買時,A、B兩類桌椅每套的價格分別是多少?

2)如果該數(shù)學實驗室需設置48個座位,學校到甲公司采購,應分別采購A、B兩類桌椅各多少套時所需費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角為360,則該等腰三角形的底角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是反比例函數(shù)上第一象限上一個動點,點A、點B為坐標軸上的點,A(0,k),Bk,0).已知OAB的面積為

(1)求k的值;

(2)連接PA、PB、AB,設PAB的面積為S,點P的橫坐標為t.請直接寫出St的函數(shù)關系式;

(3)閱讀下面的材料回答問題:

a>0時,

≥0,≥2,即≥2

由此可知:當=0時,即a=1時,取得最小值2.

問題:請你根據(jù)上述材料探索(2)中PAB的面積S有沒有最小值?若有,請直接寫出S的最小值;若沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,上的一點,過點于點,交于點,且=

求證:的切線;

,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點N(0,6),點Mx軸負半軸上,ON3OM.A為線段MN上一點,ABx軸,垂足為點B,ACy軸,垂足為點C.

(1)寫出點M的坐標;

(2)求直線MN的表達式;

(3)若點A的橫坐標為-1,求矩形ABOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,邊的中點,.

1)求證:;

2)若,,求的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(3,0),B(0,-1),連接AB,B點作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點坐標;

(2)如圖2,P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,CP、Q三點共線,求此時P點坐標及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在中,,,,垂足為點,且,連接.

1)如圖①,求證:是等邊三角形;

2)如圖①,若點、分別為上的點,且,求證:;

3)利用(1)(2)中的結論,思考并解答:如圖②,上一點,連結,當時,線段,,之間有何數(shù)量關系,給出證明.

查看答案和解析>>

同步練習冊答案