【題目】如圖,中,平分于點,在上截取,過點于點.求證:四邊形是菱形;

如圖中,平分的外角的延長線于點,在的延長線上截取,過點的延長線于點.四邊形還是菱形嗎?如果是,請證明;如果不是,請說明理由.

【答案】(1)證明見解析;(2)四邊形是菱形.理由見解析.

【解析】

(1)直接由SAS得出△ADE≌△ADC,進而得出DE=DC,∠ADE=∠ADC.再由SAS證明△AFE≌△AFC,得出EF=CF.由EF∥BC得出∠EFD=∠ADC,從而∠EFD=∠ADE,根據(jù)等角對等邊得出DE=EF,從而DE=EF=CF=DC,由菱形的判定可知四邊形CDEF是菱形.

(2)首先由SAS證出△ADE≌△ADC,△AFE≌△AFC,得出DE=DC,∠ADE=∠ADC,EF=CF.然后由EF∥BC,得出∠EFD=∠ADC,從而∠EFD=∠ADE,根據(jù)等邊對等角得出DE=EF,則DE=EF=CF=DC,由菱形的判定可知四邊形CDEF是菱形.

證明:在中,

;

,

同理

,

,

,

∴四邊形是菱形.

解:四邊形是菱形.理由如下:

中,

,

同理

,

,

,

∴四邊形是菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求AOB的面積;

(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點DAB的中點,點EAB邊上一點.

1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;

2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司舉行周年慶典,決定訂購一批印有公司logo的記事本贈送給客戶,購買甲種記事本共花費3000元,購買乙種記事本共花費2100元,購買甲種記事本的數(shù)量是購買乙種記事本數(shù)量的2倍,且購買一個乙種記事本比購買一個甲種記事本多花20.

(1)求購買一個甲種記事本,一個乙種記事本各需多少元?

(2)由于公司業(yè)務的擴大,公司決定再次購買甲、乙兩種記事本共40個,且乙種記事本不少于23個,預算金額不超過2400元,購買時恰逢該店對兩種記事本的售價進行調(diào)整,甲種記事本售價比第一次購買時提高了10%,乙種記事本售價比第一次購買時降低了10%,請問該公司有哪幾種方案購買這批記事本?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:中,

求作邊上的垂直平分線,使得;將線段沿著的方向平移到線段(其中點平移到點,畫出平移后的線段;(要求用尺規(guī)作圖,不寫作法,保留作圖痕跡.)

連接、,試判斷四邊形是矩形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,為銳角,點為射線上一動點,連接.以為直角邊且在的上方作等腰直角三角形.

1)若,

①當點在線段上時(與點不重合),試探討的數(shù)量關系和位置關系;

②當點在線段的延長線上時,①中的結(jié)論是否仍然成立,請在圖2中面出相應的圖形并說明理由;

2)如圖3,若,,,點在線段上運動,試探究的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,點為線段上一點,,若,則__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.

(1)請寫出圖2中陰影部分的面積;

(2)觀察圖2你能寫出下列三個代數(shù)式之間的等量關系嗎?

代數(shù)式:(m+n)2, (m﹣n)2, mn;

(3)根據(jù)(2)中的等量關系,解決如下問題:若a+b=7,ab=5,求(a﹣b)2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程

查看答案和解析>>

同步練習冊答案