【題目】如圖,,點為線段上一點,,若,則__________.

【答案】23°

【解析】

如圖,作DHBCBC的延長線于H.只要證明△ABP≌△PHDAAS),得出ABPHPBDH,∠A=∠DPH22°,由ABCB,推出BCPH,推出PBCHDH,可得∠DCH45°即可解決問題;

如圖,作DHBCBC的延長線于H

ABBC,DHBC,PAPD,

∴∠B=∠APD=∠H90°,

∴∠A+∠APB90°,∠APB+∠DPH90°,

∴∠A=∠DPH,

PAPD

∴△ABP≌△PHDAAS),

ABPH,PBDH,∠A=∠DPH22°,

ABCB

BCPH,

PBCHDH,

∴∠DCH45°,

∵∠DCH=∠DPC+∠PDC,

∴∠PDC23°.

故答案為23°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD交于點O,且DEAC,CEBD.

(1)求證:四邊形OCED是菱形;

(2)若∠BAC=30°,AC=4,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB:y=kx+b交拋物線y=于點A、B(AB點左側(cè)),過點B的直線BD與拋物線只有唯一公共點,且與y軸負半軸交于點D.

(1)若k=,b=2,求點A、B兩點坐標;

(2)ABy軸于點C,若BC=CD,OC=CE,點Ey軸正半軸上,EFx軸,交拋物線于點F,求EF的長;

(3)在(1)的條件下,P為射線BD上一動點,PNy軸交拋物線于點N,交直線于點Q,PMAN交直線于點M,求MQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,平分于點,在上截取,過點于點.求證:四邊形是菱形;

如圖,中,平分的外角的延長線于點,在的延長線上截取,過點的延長線于點.四邊形還是菱形嗎?如果是,請證明;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1(3x2y)3·(2xy3);

2-x-x-y

3-5x-x2+2x+1

4)(3x+y(-y+3x)

52a(a-2a3)-(-3a2)2

6(x-3)(x+2)-(x+1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湘一追逐夢想數(shù)學興趣小組編了一個·遠方的計算程序,規(guī)定:輸入數(shù)據(jù),時,若輸出的是代數(shù)式稱為,若輸出的是等式稱為遠方”.

回答下列問題:

(1)當輸入正整數(shù)時,得到遠方,若遠方,求證是完全平方式.(溫馨提示:對于一個整式,如果存在另一個整式,使的條件,則稱是完全平方式,比如是完全平方式.)

(2)當輸入,時,求遠方,的正整數(shù)解.

(3)若正數(shù)互為倒數(shù),求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式:

;②;③;④;⑤;⑥為常數(shù));⑦為常數(shù)).是二次函數(shù)的有( )

A. 1個 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC,ACB=90°,CD,CE三等分ACB,CDAB.

求證:(1)AB=2BC;

(2)CE=AE=EB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀以下文字并解決問題:對于形如這樣的二次三項式,我們可以直接用公式法把它分解成的形式,但對于二次三項式,就不能直接用公式法分解了.此時,我們可以在中間先加上一項,使它與的和構(gòu)成一個完全平方式,然后再減去,則整個多項式的值不變.即:,像這樣,把一個二次三項式變成含有完全平方式的形式的方法,叫做配方法.

利用配方法因式分解:

如果,求的值.

查看答案和解析>>

同步練習冊答案