【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關于該二次函數(shù),下列說法錯誤的是( )
A.函數(shù)有最小值
B.當﹣1<x<3時,y>0
C.當x<1時,y隨x的增大而減小
D.對稱軸是直線x=1
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,
(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β(α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從(1)、(2)的結果中,你發(fā)現(xiàn)了什么規(guī)律,請寫出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司擬為貧困山區(qū)建一所希望小學,甲、乙兩個工程隊提交了投標方案,若獨立完成該項目,則甲工程隊所用時間是乙工程隊的1.5倍;若甲、乙兩隊合作完成該項目,則共需72天.
(1)甲、乙兩隊單獨完成建校工程各需多少天?
(2)若由甲工程隊單獨施工,平均每天的費用為0.8萬元,為了縮短工期,該公司選擇了乙工程隊,但要求其施工的總費用不能超過甲工程隊,求乙工程隊平均每天的施工費用最多為多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD∥BC,AF平分∠BAD交BC于點F,BE平分∠ABC交AD于點E.求證:
(1)△ABF是等腰三角形;
(2)四邊形ABFE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸交與點E,已知點B(﹣1,0).
(1)點A的坐標: , 點E的坐標:;
(2)若二次函數(shù)y=﹣ x2+bx+c過點A、E,求此二次函數(shù)的解析式;
(3)P是AC上的一個動點(P與點A、C不重合)連結PB、PD,設l是△PBD的周長,當l取最小值時,求點P的坐標及l(fā)的最小值并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2 的正方形ABCD中,點E為AD邊的中點,將△ABE沿BE翻折,使點A落在點A′處,作射線EA′,交BC的延長線于點F,則CF= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點A(﹣1,0)、B(3,0)、點C三點.
(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個單位長度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設平移的時間為t秒,試求S與t之間的函數(shù)關系式?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】麒麟?yún)^(qū)第七中學現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計劃在空地上種草皮,經(jīng)測量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m.
(1)求出空地ABCD的面積?
(2)若每種植1平方米草皮需要300元,問總共需投入多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com