【題目】小梅將邊長分別為,,,,,…長的若干個正方形按一定規(guī)律拼成不同的長方形,如圖所示.
求第四個長方形的周長;
當時,求第五個長方形的面積.(用科學記數(shù)法表示)
【答案】(1)26m;(2)
【解析】
(1)根據(jù)第一個的周長為:2(1+2)m,第二個的周長為:2(2+3)m,第三個的周長為:2(3+5)m,可得第四個的周長為:2(5+8)m,據(jù)此可得第四個長方形的周長;
(2)根據(jù)(1)中的規(guī)律可得:第五個長方形的寬為8m,長為13m,據(jù)此可得當m=100時,第五個長方形的面積為800×1300=1.04×106.
(1)第一個的周長為:2(1+2)m,第二個的周長為:2(2+3)m,第三個的周長為:2(3+5)m,第四個的周長為:2(5+8)m,即第四個長方形的周長為26m;
(2)由此可推出第n個長方形的寬為第n﹣1個長方形的長,第n個長方形的長為第n﹣1個長方形的長和寬的和.
可得:第五個長方形的寬為8m,長為13m,∴當m=100時,第五個長方形的面積為800×1300=1.04×106.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知△ABC,求證:∠A+∠B+∠C=180°.
通過畫平行線,將∠A、∠B、∠C作等角代換,使各角之和恰為一平角,依輔助線不同而得多種證法.
證法1:如圖1,延長BC到D,過C畫CE∥BA.
∵BA∥CE(作圖2所知),
∴∠B=∠1,∠A=∠2(兩直線平行,同位角、內錯角相等).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定義),
∴∠A+∠B+∠ACB=180°(等量代換).
如圖3,過BC上任一點F,畫FH∥AC,F(xiàn)G∥AB,這種添加輔助線的方法能證明∠A+∠B+∠C=180°嗎?請你試一試.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖中的AB所在的直線上建一圖書室,本社區(qū)有兩所學校所在的位置在點C和點D處,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.Okm,試問:圖書室E應該建在距點A多少km處,才能使它到兩所學校的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個長為、寬為的長方形(其中,均為正數(shù),且),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖方式拼成一個大正方形.
如圖是一個長為、寬為的長方形(其中,均為正數(shù),且),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖方式拼成一個大正方形.
你認為圖中大正方形的邊長為________;小正方形(陰影部分)的邊長為________.(用含、的代數(shù)式表示)
仔細觀察圖,請你寫出下列三個代數(shù)式:,,所表示的圖形面積之間的相等關系,并選取適合、的數(shù)值加以驗證.
已知,.求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學中,有許多關系都是在不經(jīng)意間被發(fā)現(xiàn)的.當然,沒有敏銳的觀察力是做不到的.數(shù)學家們往往是這樣來研究問題的:特值探究–猜想歸納–邏輯證明–總結應用.下面我們也來像數(shù)學家們那樣分四步找出這兩個代數(shù)式的關系:對于代數(shù)式與.
特值探究:
當,時,________;________
當,時,________;________
猜想歸納:
觀察的結果,寫出與的關系:________.
邏輯證明:如圖,邊長為的正方形紙片剪出一個邊長為的小正方形之后,剩余部分(即陰影部分)又剪拼成一個矩形(不重疊無縫隙),請你說說是如何用這個圖來得出中的關系?
總結應用:利用你發(fā)現(xiàn)的關系,求:
①若,且,則________;
②的值.(提示:你可能要用到公式)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一工程,在工程招標時,接到甲、乙兩個工程隊的投標書.施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元.工程領導小組根據(jù)甲、乙兩隊的投標書測算,有如下方案:
(1)甲隊單獨完成這項工程剛好如期完成;
(2)乙隊單獨完成這項工程要比規(guī)定日期多用6天;
(3)若甲、乙兩隊合作3天,余下的工程由乙隊單獨做也正好如期完成.
試問:(1)規(guī)定日期是多少天?
(2)在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的對稱軸是直線x=2,頂點A的縱坐標為1,點B(4,0)在此拋物線上.
(1)求此拋物線的解析式;
(2)若此拋物線對稱軸與x軸交點為C,點D(x,y)為拋物線上一動點,過點D作直線y=2的垂線,垂足為E.
①用含y的代數(shù)式表示CD2 , 并猜想CD2與DE2之間的數(shù)量關系,請給出證明;
②在此拋物線上是否存在點D,使∠EDC=120°?如果存在,請直接寫出D點坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1) (2)
(3)(-2)-(+4.7)-(-0.4)+ (-3.3) (4)
(5) (6)(-+)×(-36)
(7) (8)—(用簡便方法計算)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,點P、Q同時從點C出發(fā),以1cm/s的速度分別沿CA、CB勻速運動.當點Q到達點B時,點P、Q同時停止運動.過點P作AC的垂線l交AB于點R,連接PQ、RQ,并作△PQR關于直線l對稱的圖形,得到△PQ′R.設點Q的運動時間為t(s),△PQ′R與△PAR重疊部分的面積為S(cm2).
(1)t為何值時,點Q′恰好落在AB上?
(2)求S與t的函數(shù)關系式,并寫出t的取值范圍;
(3)S能否為 cm2?若能,求出此時的t值;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com