【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),

(1)設(shè)∠AED的度數(shù)為x,∠ADE的度數(shù)為y,那么∠1、∠2的度數(shù)分別是多少?(用含有xy的代數(shù)式表示)

(2)∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)找出這個(gè)規(guī)律,并說(shuō)明理由.

【答案】(1)∠1=(180﹣2x)度,∠2=(180﹣2y)度;(2)∠A(∠1+∠2).

【解析】

(1)根據(jù)翻折不變性,得到∠AED=A′ED,ADE=A′DE,根據(jù)鄰補(bǔ)角定義,可得到∠1、2的度數(shù)(用含有xy的代數(shù)式表示);

(2)根據(jù)(1)中結(jié)論和三角形的內(nèi)角和定理即可求出∠A與∠1+2之間的數(shù)量關(guān)系.

(1)∵∠AEDx度,∠ADEy度,

∴∠AEA′=2x度,∠ADA′=2y度,

∴∠1=(180﹣2x)度,

2=(180﹣2y)度;

(2)∵∠1=(180﹣2x)度①,

2=(180﹣2y)度②,

由①得,x=(90﹣1),

由②得,y=(90﹣2).

A=180﹣xy=180﹣(90﹣1)﹣(90﹣2)=1+2)度.

∴結(jié)論為:∠A1+2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l1:y=k1x+b過(guò)A(0,﹣3),B(5,2),直線l2:y=k2x+2.
(1)求直線l1的表達(dá)式;
(2)當(dāng)x≥4時(shí),不等式k1x+b>k2x+2恒成立,請(qǐng)寫出一個(gè)滿足題意的k2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)CD,在直線CD上有一點(diǎn)P

1)如果P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),問(wèn)∠PAC∠APB,∠PBD有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

2)若點(diǎn)PC、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)CD不重合),試探索∠PAC∠APB,∠PBD之間的關(guān)系又是如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C 是路段 AB 的中點(diǎn),兩人從 C 同時(shí)出發(fā),以相同的速度分別沿兩條直線行走,并同時(shí)到達(dá) D,E 兩地,DAAB,EBAB,DE 與路段AB 的距離相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠BAC=90°,ABAC,D AC 邊上一動(dòng)點(diǎn), CEBD E

(1)如圖(1),若 BD 平分∠ABC 時(shí),①求∠ECD 的度數(shù);②求證:BD=2EC

(2)如圖(2),過(guò)點(diǎn) A AFBE 于點(diǎn) F,猜想線段 BE,CEAF 之間的數(shù)量關(guān)系并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小彬買了A、B兩種書,單價(jià)分別是18元、10元.

1)若兩種書共買了10本付款172元,求每種書各買了多少本?

2)買10本時(shí)付款可能是123元嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE⊥OD,OE平分∠AOF.

(1)∠BOD∠DOF相等嗎?請(qǐng)說(shuō)明理由.

(2)若∠DOF=∠BOE,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).

(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請(qǐng)你求出∠EAD與∠B、∠C之間的數(shù)列關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與正比例函數(shù)的圖像相交于點(diǎn)A(2,),與軸相交于點(diǎn)B

(1)求、的值;

(2)在軸上存在點(diǎn)C,使得AOC的面積等于AOB的面積,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案