【題目】如圖,在四邊形AECF中,CE、CF分別是ABC的內(nèi),外角平分線.

1)求證:四邊形AECF是矩形.

2)當(dāng)ABC滿足什么條件時,四邊形AECF是正方形?請說明理由.

【答案】1)見解析;(2)當(dāng)滿足時,四邊形AECF是正方形,見解析.

【解析】

1)求出∠ECF=90°=E=F,即可推出答案;
2)∠ACB=90°,推出∠ACE=EAC=45°,AE=CE即可.

1)證明:∵CECF分別是的內(nèi)、外角平分線,

,

,即

,

∴四邊形AECF是矩形.

2)解:當(dāng)滿足時,四邊形AECF是正方形.

理由:

∵四邊形AECF是矩形,∴四邊形AECF是正方形.

故答案為:(1)見解析;(2)當(dāng)滿足時,四邊形AECF是正方形,見解析.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,ACD沿AD折疊,使得點C落在斜邊AB上的點E處.

(1)求證:BDE∽△BAC;

(2)已知AC=6,BC=8,求線段AD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOD90°,OC平分∠BOD,∠AOB與∠BOC的度數(shù)的比是47

1)求∠AOB的度數(shù).

2)若以點O為觀察中心,以OD為正北方向,則從方位角來說,射線OC在什么方向?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形內(nèi)部有若干個點,用這些點以及正方形的頂點、、把原正方形分割成一些三角形(互相不重疊)

1)填寫下表:

正方形內(nèi)點的個數(shù)

1

2

3

4

分割成的三角形的個數(shù)

4

6

______

______

______

2)如果原正方形內(nèi)有101個點,此時原正方形被分割成多少個三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,點、依次在直線上,現(xiàn)將射線繞點沿順時針方向以每秒的速度旋轉(zhuǎn),同時射線繞點沿逆時針方向以每秒的速度旋轉(zhuǎn),如圖,設(shè)旋轉(zhuǎn)時間為秒).

1)用含的代數(shù)式表示的度數(shù).

2)在運動過程中,當(dāng)第二次達到時,求的值.

3)在旋轉(zhuǎn)過程中是否存在這樣的,使得射線是由射線、射線、射線中的其中兩條組成的角(指大于而不超過的角)的平分線?如果存在,請直接寫出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是作已知角的角平分線”的尺規(guī)作圖過程.

已知:如圖1,MON

求作:射線OP,使它平分MON

作法:如圖2,

(1)以點O為圓心,任意長為半徑作弧,交OM于點A,交ON于點B;

(2)連結(jié)AB

(3)分別以點A,B為圓心,大于AB的長為半徑作弧,兩弧相交于點P

(4)作射線OP

所以,射線OP即為所求作的射線.

請回答:該尺規(guī)作圖的依據(jù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點A、BO在數(shù)軸上對應(yīng)的數(shù)為a、b0,且滿足|a+8|+b1220,點M、N分別從OB出發(fā),同時向左勻速運動,M的速度為1個單位長度每秒,N的速度為3個單位長度每秒,AB之間的距離定義為:AB|ab|

1)直接寫出OA   OB   ;

2)設(shè)運動的時間為t秒,當(dāng)t為何值時,恰好有AN2AM;

3)若點P為線段AM的中點,Q為線段BN的中點,M、N在運動的過程中,PQ+MN的長度是否發(fā)生變化?若不變,請說明理由,若變化,當(dāng)t為何值時,PQ+MN有最小值?最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OM是AOC的平分線,ON是BOC的平分線.

(1)如圖1,當(dāng)AOB是直角,BOC=60°時,MON的度數(shù)是多少?

(2)如圖2,當(dāng)AOB=αBOC=60°時,猜想MON與α的數(shù)量關(guān)系;

(3)如圖3,當(dāng)AOB=α,BOC=β時,猜想MON與α、β有數(shù)量關(guān)系嗎?如果有,指出結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC的邊長是2,D、E分別為AB、AC的中點,過E點作EFDCBC的延長線于點F,連接CD.

(1)求證:四邊形CDEF是平行四邊形;

(2)求EF的長.

查看答案和解析>>

同步練習(xí)冊答案