【題目】已知二次函數(shù)的圖象與軸交于兩點,與軸交于點.

1)求、、三點坐標;

2)求過、兩點的一次函數(shù)的解析式;

3)如果是線段上的動點,試求的面積之間的關系式.

【答案】1、、;(2y=-x+6;(3S=-2x+120<x<6

【解析】

1)拋物線的解析式中,令x=0可求得C點坐標,令y=0可求得A、B的坐標;

2)已知了BC的坐標,用待定系數(shù)法求解即可;

3)根據(jù)直線BC的解析式可用x表示出P點的縱坐標,以OA為底,P點縱坐標的絕對值為高即可得到的面積,由此可求得Sx的函數(shù)關系式;

解:(1)當時,,解得:,

的坐標為,點的坐標為;

時,的坐標為

2)設過,兩點的一次函數(shù)的解析式為

,代入,得:

,解得:,

兩點的一次函數(shù)的解析式為

3)過點軸,垂足為,如圖所示.

的坐標為,,

的坐標為,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OF是∠MON的平分線,點A在射線OM上,PQ是直線ON上的兩動點,點Q在點P的右側,且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB

1)如圖1,當P、Q兩點都在射線ON上時,請直接寫出線段ABPB的數(shù)量關系;

2)如圖2,當PQ兩點都在射線ON的反向延長線上時,線段ABPB是否還存在(1)中的數(shù)量關系?若存在,請寫出證明過程;若不存在,請說明理由;

3)如圖3,MON=60°,連接AP,設=k,當PQ兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】試題分析:(1)結論:AB=PB.連接BQ,只要證明AOB≌△PQB即可解決問題;

2)存在.證明方法類似(1);

3)連接BQ.只要證明ABP∽△OBQ,即可推出=,由AOB=30°,推出當BAOM時, 的值最小,最小值為0.5,由此即可解決問題;

試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ

BC垂直平分OQ,BO=BQ∴∠BOQ=∠BQO,OF平分MON∴∠AOB=∠BQO,OA=PQ,∴△AOB≌△PQBAB=PB

2)存在,理由:如圖2中,連接BQ

BC垂直平分OQ,BO=BQ,∴∠BOQ=∠BQO,OF平分MONBOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,OA=PQ,∴△AOB≌△PQB,AB=PB

3)連接BQ

易證ABO≌△PBQ,∴∠OAB=BPQAB=PB,∵∠OPB+BPQ=180°,∴∠OAB+OPB=180°,AOP+ABP=180°,∵∠MON=60°∴∠ABP=120°,BA=BP,∴∠BAP=BPA=30°,BO=BQ,∴∠BOQ=BQO=30°∴△ABP∽△OBQ, =,∵∠AOB=30°,BAOM時, 的值最小,最小值為0.5,k=0.5

點睛:本題考查相似綜合題、全等三角形的判定和性質、相似三角形的判定和性質等知識,解題的關鍵是正確尋找全等三角形解決問題,學會用轉化的思想思考問題,屬于中考?碱}型.

型】解答
束】
28

【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點P作PEx軸,垂足為E,交直線l于點F.

(1)試求該拋物線表達式;

(2)如圖(1),若點P在第三象限,四邊形PCOF是平行四邊形,求P點的坐標;

(3)如圖(2),過點P作PHy軸,垂足為H,連接AC.

求證:ACD是直角三角形;

試問當P點橫坐標為何值時,使得以點P、C、H為頂點的三角形與ACD相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于A、B兩點,點A的坐標為(0,4),M是圓上一點,∠BMO120°,則⊙C的半徑為____,圓心C的坐標為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yx26x+m滿足以下條件:當﹣2x<﹣1時,它的圖象位于x軸的下方;當8x9時,它的圖象位于x軸的上方,則m的值為(  )

A.27B.9C.7D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1).

1)以O點為位似中心在y軸的左側將OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;

2B點的對應點B′的坐標是 C點的對應點C′的坐標是

3)在BC上有一點Px,y),按(1)的方式得到的對應點P′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點 E,交⊙O于點D,連接BD.

1)求證:BAD=CBD;

2)若∠AEB=125°,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,的頂點均在格點上,三個頂點的坐標分別為.

1)將關于軸作軸對稱變換得,則點的坐標為______.

2)將繞原點按逆時針方向旋轉,則點的坐標為______.

3)在(1)(2)的基礎上,圖中的是中心對稱圖形,對稱中心的坐標為______.

4)若以點、、為頂點的四邊形為菱形,直接寫出點的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游樂場部分平面圖如圖所示,CE,A在同一直線上D,E,B在同一直線上,測得A處與E處的距離為80 m,C處與D處的距離為34 m,C90°,ABE90°,BAE30°.( ≈1.4, ≈1.7)

(1)求旋轉木馬E處到出口B處的距離;

(2)求海洋球D處到出口B處的距離(結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,科技小組準備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m,設AD的長為mDC的長為m。

1)求之間的函數(shù)關系式;

2)根據(jù)實際情況,對于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請說明理由;

3)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料ADDC的長都是整米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

同步練習冊答案