【題目】某超市為了銷售一種新型“吸水拖把”,對銷售情況作了調(diào)查,結(jié)果發(fā)現(xiàn)每月銷售量y(只)與銷售單價x(元)滿足一次函數(shù)關(guān)系,所調(diào)查的部分?jǐn)?shù)據(jù)如表:(已知每只進(jìn)價為10元,銷售單價為整數(shù),每只利潤=銷售單價﹣進(jìn)價)

銷售單價x(元)

20

22

25

月銷售額y(只)

300

280

250

1)求出yx之間的函數(shù)表達(dá)式

2)該新型“吸水拖把”每月的總利潤為w(元),求w關(guān)于x的函數(shù)表達(dá)式,并指出銷售單價為多少元時利潤最大,最大利潤是多少元?

3)由于該新型“吸水拖把”市場需求量較大,廠家又進(jìn)行了改裝,此時超市老板發(fā)現(xiàn)進(jìn)價提高了m元,當(dāng)每月銷售量與銷售單價仍滿足上述一次函數(shù)關(guān)系,隨著銷量的增大,最大利潤能減少1750元,求m的值.

【答案】(1)y=﹣10x+5002)當(dāng)銷售單價定為30元時,每月可獲得最大利潤4000元(310

【解析】

1)待定系數(shù)法求函數(shù)解析式.(2)總利潤=單件利潤×總銷售量,先表示出w,再根據(jù)二次函數(shù)求最值問題進(jìn)行配方即可.(3)含參數(shù)的二次函數(shù)問題,先表示出w,根據(jù)最大利潤列式即可求出m

1)設(shè)ykx+bk≠0),

根據(jù)題意代入點(20,300),(25,250),

解得 ,

y=﹣10x+500

2)依題意得,w=(x10)(﹣10x+500)=﹣10x2+600x5000=﹣10x302+4000,

a=﹣100,

∴當(dāng)x30時,w有最大值4000

即當(dāng)銷售單價定為30元時,每月可獲得最大利潤4000元.

3)最新利潤可表示為﹣102+600x5000m(﹣10x+500)=﹣10x2+600+10mx5000500m,

∴此時最大利潤為 40001750

解得m110,m270,

∵當(dāng)m70時,銷量為負(fù)數(shù)舍去.

m10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.

1)求yx之間的函數(shù)關(guān)系式;

2)設(shè)種植的總成本為w元,

wx之間的函數(shù)關(guān)系式;

若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明解方程=3出現(xiàn)了錯誤,解答過程如下:

方程兩邊都乘以(x-2),得1-(1-x)=3(第一步)

去括號,得1-1+x=3(第二步)

移項,合并同類項,得x=3(第三步)

檢驗,當(dāng)x=3x-2≠0(第四步)

所以x=3是原方程的解.(第五步)

(1)小明解答過程是從第____步開始出錯的,原方程化為第一步的根據(jù)是_____

(2)請寫出此題正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 x軸最多有一個交點.現(xiàn)有以下四個結(jié)論:① ;②該拋物線的對稱軸在y軸的左側(cè);③關(guān)于x的方程有實數(shù)根;④ .其中正確結(jié)論的個數(shù)為(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B是線段AP的中點,以AB為邊構(gòu)造菱形ABCD,連接PD.若tanBDP,AB13,則BD的長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年平昌冬奧會在29日到25日在韓國平昌郡舉行。為了調(diào)查中學(xué)生對冬奧會比賽項目的了解程度,某中學(xué)在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A、非常了解 B、比較了解 C、基本了解 D、不了解。根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了如圖所示的不完整的三種統(tǒng)計圖表。

(1)本次調(diào)查的樣本容量是 ,n= ;

(2)請補全條形統(tǒng)計圖;

(3)學(xué)校準(zhǔn)備開展冬奧會的知識競賽,該校共有4000名學(xué)生,請你估計這所學(xué)校本次競賽非常了解比較了解的學(xué)生總數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有兩地,甲乙兩人同時出發(fā),甲騎自行車從地到地,乙騎自行車從地到地,到達(dá)地后立即按原路返回.如圖是甲、乙兩人離地的距離與行駛時間之間的函數(shù)圖象,下列說法中①兩地相距30千米;②甲的速度為15千米/時;③點的坐標(biāo)為(,20);④當(dāng)甲、乙兩人相距10千米時,他們的行駛時間是小時或小時. 正確的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場新推出了一個極速飛車的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度.其中斜坡軌道BC的坡度(或坡比)為i12BC12米,CD8米,∠D36°,(其中點AB、CD均在同一平面內(nèi))則垂直升降電梯AB的高度約為( 。┟祝ň_到0.1米,參考數(shù)據(jù):tan36°≈0.73,cos36°≈0.81,sin36°≈0.59

A.5.6B.6.9C.11.4D.13.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工地需要利用炸藥實施爆破,操作人員點燃導(dǎo)火線后,要在炸藥爆炸前跑到300米以外的安全區(qū)域,炸藥導(dǎo)火線的長度y(厘米)與燃燒的時間x(秒)之間的函數(shù)關(guān)系如圖所示.

1)請寫出點B的實際意義,

2)求yx之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

3)問操作人員跑步的速度必須超過多少,才能保證安全.

查看答案和解析>>

同步練習(xí)冊答案