【題目】我國魏晉時期的數(shù)學(xué)家劉徽創(chuàng)立了割圓術(shù),認(rèn)為圓內(nèi)接正多邊形邊數(shù)無限增加時,周長就越接近圓周長,由此求得了圓周率π的近似值,設(shè)半徑為r的圓內(nèi)接正n邊形的周長為L,圓的直徑為d,如圖所示,當(dāng)n6時,π≈3,那么當(dāng)n12時,π≈________(結(jié)果精確到0.01,參考數(shù)據(jù):sin15°cos75°≈0.259)

【答案】3.11

【解析】

圓的內(nèi)接正十二邊形被半徑分成頂角為30°的十二個等腰三角形,作輔助線構(gòu)造直角三角形,根據(jù)中心角的度數(shù)以及半徑的大小,求得L=24rsin15°,d=2r,進(jìn)而得到,π≈≈3.11

解:如圖,圓的內(nèi)接正十二邊形被半徑分成12個如圖所示的等腰三角形,其頂角為30°,

即∠AOB=30°,
OHAB于點H,則∠AOH=15°,
AO=BO=r,
RtAOH中,

AH=r×sin15°,AB=2AH=2r×sin15°,
L=12×2r×sin15°=24r×sin15°,
又∵d=2r,

故答案為:3.11

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山頂有一塔,塔高.計劃在塔的正下方沿直線開通穿山隧道.從與點相距處測得、的仰角分別為、,從與點相距處測得的仰角為.求隧道的長度.(參考數(shù)據(jù):,.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情期間,甲、乙兩家網(wǎng)店以同樣價格銷售相同的防疫用品,它們的優(yōu)惠方案分別為:甲店,一次性購物中超過100元后的價格部分打七折;乙店,一次性購物中超過500元后的價格部分打五折,設(shè)商品原價為元(),購物應(yīng)付金額為元.

1)求出在甲店購物時之間的函數(shù)解析式;

2)在乙店購物時之間的函數(shù)圖像如圖所示(圖中線段、射線),請在圖中畫出(l)中所得函數(shù)當(dāng)時的圖像,并分別寫出該圖像與圖中的交點的坐標(biāo);

3)根據(jù)函數(shù)圖像,請直接寫出新冠肺炎疫情期間選擇哪家網(wǎng)店購物更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定一種新的運算△:abaab)﹣ab.例如,121×(12)﹣124

189   ;

2)若x311,求x的值;

3)求代數(shù)式﹣x4的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點在反比例函數(shù)的圖象上,點的延長線上,軸,垂足為與反比例函數(shù)的圖象相交于點,連接

1)求該反比例函數(shù)的解析式;

2)若,設(shè)點的坐標(biāo)為,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景

在綜合實踐課上,同學(xué)們以圖形的平移與旋轉(zhuǎn)為主題開展數(shù)學(xué)活動,如圖(1),先將一張等邊三角形紙片對折后剪開,得到兩個互相重合的△ABD△EFD,點E與點A重合,點B與點F重合,然后將△EFD繞點D順時針旋轉(zhuǎn),使點F落在邊AB上,如圖(2),連接EC.

操作發(fā)現(xiàn)

1)判斷四邊形BFEC的形狀,并說明理由;

實踐探究

2)聰聰提出疑問:若等邊三角形的邊長為8,能否將圖(2)中的△EFD沿BC所在的直線平移a個單位長度(規(guī)定沿射線BC方向為正),得到,連接,使得得到的四邊形為菱形,請你幫聰聰解決這個問題,若能,請求出a的值;若不能,請說明理由。

3)老師提出問題:請參照聰聰?shù)乃悸,若等邊三角形的邊長為8,將圖(2)中的△EFD在平面內(nèi)進(jìn)行一次平移,得到,畫出平移后構(gòu)造出的新圖形,標(biāo)明字母,說明平移及構(gòu)圖方法,寫出你發(fā)現(xiàn)的一個結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,,是射線上一點,連接,沿將三角形折疊,得三角形

1)當(dāng)時,=_______度;

2)如圖,當(dāng)時,求線段的長度;

3)當(dāng)點落在平行四邊形的邊上時,直接寫出線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014廣州)從廣州到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3.

1)求普通列車的行駛路程;

2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需要時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一”期間甲乙兩商場搞促銷活動,甲商場的方案是:在一個不透明的箱子里放4個完全相同的小球,球上分別標(biāo)“0元”“20元”“30元”“50元”,顧客每消費滿300元就可從箱子里不放回地摸出2個球,根據(jù)兩個小球所標(biāo)金額之和可獲相應(yīng)價格的禮品;乙商場的方案是:在一個不透明的箱子里放2個完全相同的小球,球上分別標(biāo)“5元”“30元”,顧客每消費滿100元,就可從箱子里有放回地摸出1個球,根據(jù)小球所標(biāo)金額可獲相應(yīng)價格的禮品.某顧客準(zhǔn)備消費300.

(1)請用畫樹狀圖或列表法,求出該顧客在甲商場獲得禮品的總價值不低于50元的概率;

(2)判斷該顧客去哪個商場消費使獲得禮品的總價值不低于50元機會更大?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案