【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn) E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數(shù).
【答案】(1)見解析;(2) 40°.
【解析】
(1)根據(jù)角平分線的性質(zhì)可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進(jìn)而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;
(2)由(1)可得出∠ECD=∠EDC=35°,進(jìn)而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質(zhì)結(jié)合三角形內(nèi)角和定理即可求出∠A的度數(shù).
(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.
∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.
(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.
∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1 (要求A與A1,B與B1,C與C1相對應(yīng));
(2)求△ABC的面積;
(3)在直線l上找一點(diǎn)P,使得△PAC的周長最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+3x+m的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn)
(1)求m的值及C點(diǎn)坐標(biāo);
(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請簡要說明理由
(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對稱點(diǎn)為Q
①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);
②點(diǎn)P的橫坐標(biāo)為t(0<t<4),當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BO、CO分別平分∠ABC和∠ACB.計(jì)算:
(1)若∠A=60°,求∠BOC的度數(shù);
(2)若∠A=100°,則∠BOC的度數(shù)是多少?
(3)若∠A=120°,則∠BOC的度數(shù)又是多少?
(4)由(1)、(2)、(3),你發(fā)現(xiàn)了什么規(guī)律?請用一個(gè)等式將這個(gè)規(guī)律表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分線AG交BC于點(diǎn)G.
(1)求證:∠BAG=∠BGA;
(2)如圖2,∠BCD的平分線CE交AD于點(diǎn)E,與射線GA相交于點(diǎn)F,∠B=50°.
①若點(diǎn)E在線段AD上,求∠AFC的度數(shù);
②若點(diǎn)E在DA的延長線上,直接寫出∠AFC的度數(shù);
(3)如圖3,點(diǎn)P在線段AG上,∠ABP=2∠PBG,CH∥AG,在直線AG上取一點(diǎn)M,使∠PBM=∠DCH,請直接寫出∠ABM:∠PBM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實(shí)施城鎮(zhèn)化建設(shè),新遷入了4萬人后,水庫只能夠維持居民15年的用水量.
(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?
(2)政府號召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實(shí)現(xiàn)目標(biāo)?
(3)某企業(yè)投入1000萬元設(shè)備,每天能淡化5000m3海水,淡化率為70%.每淡化1m3海水所需的費(fèi)用為1.5元,政府補(bǔ)貼0.3元.企業(yè)將淡化水以3.2元/m3的價(jià)格出售,每年還需各項(xiàng)支出40萬元.按每年實(shí)際生產(chǎn)300天計(jì)算,該企業(yè)至少幾年后能收回成本(結(jié)果精確到個(gè)位)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶市2017年女子迷你馬拉松比賽在南濱路舉行,王老師和劉老師參加了比賽,圖中AB、OC分別表示王老師和劉老師前往終點(diǎn)所跑的路程S(km)隨時(shí)間t(min)變化的函數(shù)圖象,以下說法:①這是全長為5km的比賽;②王老師比劉老師早15分鐘到達(dá)終點(diǎn);③王老師出發(fā)15分鐘時(shí)遇到劉老師;④王老師的平均速度為500米/分鐘.其中正確的有( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=5x+5交x軸于點(diǎn)A,交y軸于點(diǎn)C,過A,C兩點(diǎn)的二次函數(shù)y=ax2+4x+c的圖象交x軸于另一點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)連接BC,點(diǎn)N是線段BC上的動(dòng)點(diǎn),作ND⊥x軸交二次函數(shù)的圖象于點(diǎn)D,求線段ND長度的最大值;
(3)若點(diǎn)H為二次函數(shù)y=ax2+4x+c圖象的頂點(diǎn),點(diǎn)M(4,m)是該二次函數(shù)圖象上一點(diǎn),在x軸、y軸上分別找點(diǎn)F,E,使四邊形HEFM的周長最小,求出點(diǎn)F,E的坐標(biāo).
溫馨提示:在直角坐標(biāo)系中,若點(diǎn)P,Q的坐標(biāo)分別為P(x1 , y1),Q(x2 , y2),
當(dāng)PQ平行x軸時(shí),線段PQ的長度可由公式PQ=|x1﹣x2|求出;
當(dāng)PQ平行y軸時(shí),線段PQ的長度可由公式PQ=|y1﹣y2|求出.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com