【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分線AG交BC于點G.
(1)求證:∠BAG=∠BGA;
(2)如圖2,∠BCD的平分線CE交AD于點E,與射線GA相交于點F,∠B=50°.
①若點E在線段AD上,求∠AFC的度數(shù);
②若點E在DA的延長線上,直接寫出∠AFC的度數(shù);
(3)如圖3,點P在線段AG上,∠ABP=2∠PBG,CH∥AG,在直線AG上取一點M,使∠PBM=∠DCH,請直接寫出∠ABM:∠PBM的值.
【答案】(1)證明見解析;(2)①20°;②160°;(3)或
【解析】
(1)根據(jù)AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根據(jù)CF平分∠BCD,∠BCD=90°,可求出∠GCF的度數(shù),由AD//BC可求出∠AEF和∠DAB的度數(shù),根據(jù)三角形外角的性質求出∠AFC的度數(shù)即可;②根據(jù)三角形外角性質求出即可;(3)根據(jù)M點在BP的上面和下面兩種情況討論,分別求出∠PBM和∠ABM的值即可.
(1)∵AD∥BC,
∴∠GAD=∠BGA,
∵AG平分∠BAD,
∴∠BAG=∠GAD,
∴∠BAG=∠BGA;
(2)①∵CF平分∠BCD,∠BCD=90°,
∴∠GCF=45°,
∵AD∥BC,∠ABC=50°,
∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,
∵AG平分∠BAD,
∴∠BAG=∠GAD=65°,
∴∠AFC=65°﹣45°=20°;
②如圖:
∵∠AGB=65°,∠BCF=45°,
∴∠AFC=∠CGF+∠BCF=115°+45°=160°;
(3)有兩種情況:
①當M在BC的下方時,如圖:∵∠ABC=50°,∠ABP=2∠PBG,
∴∠ABP=()°,∠PBG=()°,
∵AG∥CH,
∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,
∴∠ABM=∠ABP+∠PBM=(+25)°=()°,
∴∠ABM:∠PBM=()°:25°=;
②當M在BC的上方時,如圖:
同理得:∠ABM=∠ABP﹣∠PBM=(﹣25)°=()°,
∴∠ABM:∠PBM=()°:25°=;
綜上,∠ABM:∠PBM的值是或.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(2k+1)x+k2+k(k>0)
(1)當k= 時,求這個二次函數(shù)的頂點坐標;
(2)求證:關于x的一元次方程x2﹣(2k+1)x+k2+k=0有兩個不相等的實數(shù)根;
(3)如圖,該二次函數(shù)與x軸交于A、B兩點(A點在B點的左側),與y軸交于C點,P是y軸負半軸上一點,且OP=1,直線AP交BC于點Q,求證: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD繞點B逆時針旋轉30°后得到矩形A1BC1D1 , C1D1與AD交于點M,延長DA交A1D1于F,若AB=1,BC= ,則AF的長度為( )
A.2﹣
B.
C.
D. ﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個三角形有一條邊上的高等于這條邊的一半,那么我們把這個三角形叫做半高三角形.已知直角三角形是半高三角形,且斜邊,則它的周長等于_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①b<0,c>0;②a+b+c<0;③方程的兩根之和大于0;④a﹣b+c<0,其中正確的個數(shù)是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點 E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題(不寫作法,保留作圖痕跡):
(1)尺規(guī)作圖:校園有兩條路OA、OB,在交叉路口附近有兩塊宣傳牌C、D,學校準備在這里安裝一盞路燈,要求燈柱的位置P離兩塊宣傳牌一樣遠,并且到兩條路的距離也一樣遠,請你幫助畫出燈柱的位置P(如圖1).(不寫畫圖過程,保留作圖痕跡)
(2)用直尺和圓規(guī)在如圖2所示的數(shù)軸上作出表示的點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鐵路上、兩點相距25km,為良村莊,于,于,已知,,現(xiàn)在要在鐵路上修建一個土特產(chǎn)收購站.
(1)在圖中,若,則戰(zhàn)應修建在離站多少千米處.
(2)在圖中,若值最小,則點應建在哪里,請求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于E,DF⊥AC于F,
(1)證明AE=AF;
(2)若△ABC面積是36cm2,AB=10cm,AC=8cm,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com