【題目】現(xiàn)有一個種植總面積為的矩形塑料溫棚,分壟間隔套種草莓和西紅柿共壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于8壟,又不超過壟(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤分別如下:
⑴若設草莓共種植了壟,通過計算說明共有幾種種植方案?分別是哪幾種?
⑵在這幾種種植方案中,哪種方案獲得的利潤最大?最大利潤是多少?
占地面積(m2/壟) | 產(chǎn)量(千克/壟) | 利潤(元/千克) | |
西紅柿 | 32 | 160 | 1.0 |
草莓 | 15 | 50 | 1.6 |
【答案】(1)共有三種種植方案,具體方案見解析;(2)當草莓種植14壟,西紅柿種植10壟,獲得的利潤最大,最大利潤是2720元.
【解析】
(1)由于種植草莓或西紅柿壟數(shù)是不確定的,所以應利用不等式來解答.由于塑料溫棚的種植面積為530m2,所以可以列出不等式15x+32(24-x)≤530,由此可以先求得x的取值范圍,然后再確定整數(shù)x的值,從而確定種植的方案;
(2)根據(jù)(2)中的方案分別求出每種方案獲得的利潤進行比較即可得.
(1)草莓共種植了壟,根據(jù)題意西紅柿種了()壟,則有
15x+32(24-x)≤530,
解得x≥14,
∵x≤16,且x是正整數(shù),
∴x=14,15,16
共有三種種植方案,分別是:
方案一:草莓種植14壟,西紅柿種植10壟;
方案二:草莓種植15壟,西紅柿種植9壟;
方案三:草莓種植16壟,西紅柿種植8壟;
(2)方案一獲得的利潤:14×50×1.6+10×160×1.0=2720(元),
方案二獲得的利潤:15×50×1.6+9×160×1.0=2640(元),
方案三獲得的利潤:16×50×1.6+8×160×1.0=2560(元),
所以當草莓種植14壟,西紅柿種植10壟,獲得的利潤最大,最大利潤是2720元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件不能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:中,,求證:,下面寫出可運用反證法證明這個命題的四個步驟:
①∴,這與三角形內(nèi)角和為矛盾,②因此假設不成立.∴,③假設在中,,④由,得,即.這四個步驟正確的順序應是( 。
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣+bx+c過點A(3,0),B(0,2).M(m,0)為線段OA上一個動點(點M與點A不重合),過點M作垂直于x軸的直線與直線AB和拋物線分別交于點P、N.
(1)求直線AB的解析式和拋物線的解析式;
(2)如果點P是MN的中點,那么求此時點N的坐標;
(3)在對稱軸的左側是否存在點M使四邊形OMPB的面積最大,如果存在求點M的坐標;不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿數(shù)軸做如下移動,第一次點A向左移動3個單位長度到達點A1,第二次將點A1向右移動6個單位長度到達點A2,第三次將點A2向左移動9個單位長度到達點A3,按照這種規(guī)律下去,第n次移動到點An,如果點An,與原點的距離不少于20,那么n的最小值是( )
A. 11B. 12C. 13D. 20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ACB和△ECD均為等腰直角三角形,∠ACB=∠ECD=90°.
(1)如圖1,點E在BC上,則線段AE和BD有怎樣的關系?請直接寫出結論(不需證明);
(2)若將△DCE繞點C旋轉(zhuǎn)一定的角度得圖2,則(1)中的結論是否仍然成立?請說明理由;
(3)當△DCE旋轉(zhuǎn)到使∠ADC=90°時,若AC=5,CD=3,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的頂點為C,對稱軸為直線,且經(jīng)過點A(3,-1),與y軸交于點B.
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)經(jīng)過點A的直線交拋物線于點P,交x軸于點Q,若,試求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+b與雙曲線y=(k是常數(shù),k≠0)在第一象限內(nèi)交于點A(1,2),且與x軸、y軸分別交于B,C兩點.點P在x軸.
(1)求直線和雙曲線的解析式;
(2)若△BCP的面積等于2,求P點的坐標;
(3)求PA+PC的最短距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇準備完成題目:化簡:,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯了,我看到該題標準答案的結果是常數(shù).”通過計算說明原題中“”是幾?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com