【題目】如圖所示△ABC,AB=AC,AD⊥BC,點(diǎn)E、F分別是AB、AC的中點(diǎn).
(1)求證:四邊形AEDF是菱形;
(2)若四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,四邊形AEDF的面積記為S1,三 角形ABC的面積記為S2,S1與S2有何數(shù)量關(guān)系_____.(直接填答案)
【答案】(1)詳見解析;(2)2S1=S2.
【解析】
(1)根據(jù)直角三角形斜邊上中線的性質(zhì),得出DE=AB=AE,DF=AC=AF,再根據(jù)AB=AC,點(diǎn)E、F分別是AB、AC的中點(diǎn),即可得到AE=AF=DE=DF,進(jìn)而判定四邊形AEDF是菱形;(2)利用三角形的中線把三角形分成面積相等的兩部分即可解答.
(1)證明:∵AD⊥BC,點(diǎn)E、F分別是AB、AC的中點(diǎn),
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,點(diǎn)E、F分別是AB、AC的中點(diǎn),
∴AE=AF,
∴AE=AF=DE=DF,
∴四邊形AEDF是菱形;
(2)2S1=S2
∵點(diǎn)E、F分別是AB、AC的中點(diǎn),
∴,
∴,
即2S1=S2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長(zhǎng)相等的下列兩種正多邊形的組合,不能作平面鑲嵌的是( 。
A.正方形與正三角形B.正五邊形與正三角形
C.正六邊形與正三角形D.正八邊形與正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s。
⑴連接AQ、CP交于點(diǎn)M,在點(diǎn)P、Q運(yùn)動(dòng)的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請(qǐng)直接寫出它的度數(shù);
⑵點(diǎn)P、Q在運(yùn)動(dòng)過程中,設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),△PBQ為直角三角形?
⑶如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請(qǐng)求出它的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形中,,,點(diǎn)是上一點(diǎn),將沿折疊,使點(diǎn)落在點(diǎn)處,連接,當(dāng)為直角三角形時(shí),的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程或列方程組解應(yīng)用題.
老京張鐵路是1909年由“中國(guó)鐵路之父”詹天佑主持設(shè)計(jì)建造的中國(guó)第一條干線鐵路,全長(zhǎng)約210千米,用“人”字形鐵軌鋪筑的方式解決了火車上山的問題.京張高鐵是2022年北京至張家口冬奧會(huì)的重點(diǎn)配套交通基礎(chǔ)設(shè)施,全長(zhǎng)約175千米,預(yù)計(jì)2019年底建成通車.京張高鐵的預(yù)設(shè)平均速度將是老京張鐵路的5倍,可以提前5個(gè)小時(shí)到達(dá),求京張高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2,2,3,4四個(gè)數(shù)中隨機(jī)取兩個(gè)數(shù),第一個(gè)作為個(gè)位上的數(shù)字,第二個(gè)作為十位上的數(shù)字,組成一個(gè)兩位數(shù),則這個(gè)兩位數(shù)是2的倍數(shù)的概率是 ( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點(diǎn)E在AB上,把△ABC沿CE折疊后,點(diǎn)B恰好與斜邊AC的中點(diǎn)D重合.
(1)求證:△ACE為等腰三角形;
(2)若AB=6,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB:分別于x,y軸交于A,B兩點(diǎn),過點(diǎn)B的直線交x軸正半軸于點(diǎn)C,且OB:OC=3:1.
(1)直接寫出點(diǎn)A、B、C的坐標(biāo);
(2)在線段OB上存在點(diǎn)P,使點(diǎn)P到B,C的距離相等,求出點(diǎn)P的坐標(biāo);
(3)在x軸上方存在點(diǎn)D,使得以點(diǎn)A,B,D為頂點(diǎn)的三角形與△ABC全等,求出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義表示不大于x的最大整數(shù),例如,,.
(1)將、、按照從小到大的順序用不等號(hào)連接:_______________;
(2)利用(1)中的結(jié)論,方程的解為___________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com