【題目】已知A(﹣4,2)、B(n,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象的兩個交點(diǎn);
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍;
(3)求△AOB的面積.
【答案】(1)y=﹣x﹣2;(2)﹣4<x<0或x>2時;(3)設(shè)6.
【解析】試題分析:(1)根據(jù)點(diǎn)A的坐標(biāo)求出反比例函數(shù)解析式,根據(jù)反比例函數(shù)解析式,求出點(diǎn)B的橫坐標(biāo)n,再根據(jù)點(diǎn)A、B求出一次函數(shù)解析式;
(2)通過觀察圖象,直接得到結(jié)果.
(3)設(shè)一次函數(shù)與y軸交點(diǎn)是C,可把△AOB分成兩個三角形△AOC、△BOC,分別求出它們的面積.
試題解析:(1)由于點(diǎn)A在反比例函數(shù)y=的圖象上,
所以2=,所以m=﹣8,
即反比例函數(shù)解析式為y=;
∵點(diǎn)B在反比例函數(shù)圖象上,所以n×(﹣4)=﹣8,
∴n=2.
因?yàn)辄c(diǎn)A、B在一次函數(shù)y=kx+b的圖象上,
∴
∴k=﹣1,b=﹣2,
∴一次函數(shù)解析式為:y=﹣x﹣2.
(2)由圖象知,當(dāng)﹣4<x<0或x>2時,一次函數(shù)的值小于反比例函數(shù)的值.
(3)設(shè)一次函數(shù)圖象與y軸交于點(diǎn)C,點(diǎn)A、B的橫坐標(biāo)分別用xA,xB表示.
則C(0,﹣2),所以OC=2,
∵S△AOB=S△OBC+S△AOC
=OC×|xB|+OC×|xA|
=×2×2+×2×4
=6.
答:△AOB的面積是6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC邊的中點(diǎn),點(diǎn)E與點(diǎn)D關(guān)于AB對稱,連接AE、BE,分別延長AE、CB交于點(diǎn)F,若∠F=48°,則∠C的度數(shù)是( )
A. 21°B. 52°C. 69°D. 74°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,將繞點(diǎn)順時針旋轉(zhuǎn)至,點(diǎn)的對應(yīng)點(diǎn)分別是,連接線段與線段交于點(diǎn)M,連接.
(1)如圖1,求證:;
(2)如圖1,求證:OM平分;
(3)如圖2,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度數(shù).
(2)圖(1)所示的圖形中,有點(diǎn)像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,觀察“規(guī)形圖”圖(2),試探究∠BDC與∠A、∠B、∠C之間的數(shù)量關(guān)系,并說明理由.
(3)請你直接利用以上結(jié)論,解決以下問題:
①如圖(3),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=42°,則∠ABX+∠ACX= °.
②如圖(4),DC平分∠ADB,EC平分∠AEB,若∠DAE=60°,∠DBE=140°,求∠DCE的度數(shù).
③如圖(5),∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG1C=68°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,過點(diǎn)的直線,為邊上一點(diǎn),過點(diǎn)作交直線于點(diǎn),垂足為點(diǎn),連結(jié)、.
(1)求證:;
(2)當(dāng)點(diǎn)是中點(diǎn)時,四邊形是什么特殊四邊形?說明你的理由;
(3)若點(diǎn)是中點(diǎn),當(dāng)四邊形是正方形時,則大小滿足什么條件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=,AD=4,在BC邊上取點(diǎn)E,使BE=AB,將△ABE向左平移到△DCF的位置,得到四邊形AEFD.
(1)求證:四邊形AEFD是菱形;
(2)如圖2,將△DCF繞點(diǎn)D旋轉(zhuǎn)至△DGA,連接GE,求線段GE的長;
(3)如圖3,設(shè)P、Q分別是EF、AE上的兩點(diǎn),且∠PDQ=67.5°,試探究線段PF、AQ、PQ之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式.(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元,那么每件商品的銷售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,點(diǎn)E是邊BC的中點(diǎn),AF∥ED,AE∥DF
(1)求證:四邊形AEDF為菱形;
(2)試探究:當(dāng)AB:BC= ,菱形AEDF為正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的對角線AC上一點(diǎn),過點(diǎn)P作EF∥BC,分別交AB,CD于點(diǎn)E,F,連接PB,PD.若AE=2,PF=8.則圖中陰影部分的面積為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com