【題目】下面是“作頂角為 120°的等腰三角形的外接圓”的尺規(guī)作圖過程.已知:△ABC,AB=AC,∠A=120°.求作:△ABC 的外接圓.作法:(1)分別以點 B 和點 C 為圓心,AB 的長為半徑作弧,兩弧的一個交點為 O;(2)連接 BO;(3)以 O 為圓心,BO 為半徑作⊙O.⊙O 即為所求作的圓.請回答:該尺規(guī)作圖的依據(jù)是_______

【答案】該尺規(guī)作圖的依據(jù)為:四邊相等的四邊形是菱形、有一個角為 60°的等腰三角形是等邊三角形、圓的定義.

【解析】

由作圖知AB=OB=OC=AC可判定四邊形ABOC為菱形,根據(jù)∠BAC=120°知∠BAO=∠CAO=60°,從而得∠BAO=∠CAO=60°,即△OAB、△OAC為等邊三角形,繼而由OB=OA=OC可得所求作的圓.

如圖,連接OA、OC,

由作圖知BA=BO、OC=OA,

AB=AC

AB=OB=OC=AC,

∴四邊形ABOC為菱形(四邊形相等的四邊形是菱形),

又∵∠BAC=120°,

∴∠BAO=∠CAO=60°,

則△OAB、△OAC為等邊三角形(有一個角為60°的等腰三角形是等邊三角形),

OB=OA=OC,

∴點AB、C在以O為圓心、OB為半徑的圓上(圓的定義),

綜上,該尺規(guī)作圖的依據(jù)為:四邊形相等的四邊形是菱形、有一個角為60°的等腰三角形是等邊三角形、圓的定義.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DRtABC斜邊AB的中點,過點B、C分別作BECD,CEBD

1)若∠A=60°AC=3,求CD的長;

2)求證:BCDE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為(  )

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B在反比例函數(shù)的圖象上,點C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點A,B的橫坐標分別為1,2,OACABD的面積之和為,則k的值為(

A. 4 B. 3 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關(guān)系,并簡要說明理由;

(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉(zhuǎn)得△AB1D1,AD1FM于點K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉(zhuǎn)角β的度數(shù);

(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2AD交于點P,A2M2BD交于點N,當NP∥AB時,求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)yx0)的圖象相交于點A、點B,與X軸交于點C,其中點A(﹣13)和點B(﹣3,n).

1)填空:m   ,n   

2)求一次函數(shù)的解析式和AOB的面積.

3)根據(jù)圖象回答:當x為何值時,kx+b≥(請直接寫出答案)   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小微企業(yè)為加快產(chǎn)業(yè)轉(zhuǎn)型升級步伐,引進一批A,B兩種型號的機器.已知一臺A型機器比一臺B型機器每小時多加工2個零件,且一臺A型機器加工80個零件與一臺B型機器加工60個零件所用時間相等.

1)每臺A,B兩種型號的機器每小時分別加工多少個零件?

2)如果該企業(yè)計劃安排AB兩種型號的機器共10臺一起加工一批該零件,為了如期完成任務(wù),要求兩種機器每小時加工的零件不少于72件,同時為了保障機器的正常運轉(zhuǎn),兩種機器每小時加工的零件不能超過76件,那么A,B兩種型號的機器可以各安排多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州漆器名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.

查看答案和解析>>

同步練習冊答案