【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)和實(shí)數(shù),給出如下定義:當(dāng)時(shí),以點(diǎn)為圓心,為半徑的圓,稱(chēng)為點(diǎn)的倍相關(guān)圓.
例如,在如圖1中,點(diǎn)的1倍相關(guān)圓為以點(diǎn)為圓心,2為半徑的圓.
(1)在點(diǎn)中,存在1倍相關(guān)圓的點(diǎn)是________,該點(diǎn)的1倍相關(guān)圓半徑為________.
(2)如圖2,若是軸正半軸上的動(dòng)點(diǎn),點(diǎn)在第一象限內(nèi),且滿足,判斷直線與點(diǎn)的倍相關(guān)圓的位置關(guān)系,并證明.
(3)如圖3,已知點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),直線與直線關(guān)于軸對(duì)稱(chēng).
①若點(diǎn)在直線上,則點(diǎn)的3倍相關(guān)圓的半徑為________.
②點(diǎn)在直線上,點(diǎn)的倍相關(guān)圓的半徑為,若點(diǎn)在運(yùn)動(dòng)過(guò)程中,以點(diǎn)為圓心,為半徑的圓與反比例函數(shù)的圖象最多有兩個(gè)公共點(diǎn),直接寫(xiě)出的最大值.
【答案】(1)解:,3(2)解:直線與點(diǎn)的倍相關(guān)圓的位置關(guān)系是相切. (3)①點(diǎn)的3倍相關(guān)圓的半徑是3;②的最大值是.
【解析】
(1)根據(jù)點(diǎn)的倍相關(guān)圓的定義即可判斷出答案;
(2)設(shè)點(diǎn)的坐標(biāo)為,求得點(diǎn)的倍相關(guān)圓半徑為,再比較與點(diǎn)到直線直線的距離即可判斷;
(3)①先求得直線的解析式,
(1)的1倍相關(guān)圓,半徑為:,
的1倍相關(guān)圓,半徑為:,不符合,
故答案為:,3;
(2)解:直線與點(diǎn)的倍相關(guān)圓的位置關(guān)系是相切,
證明:設(shè)點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作于點(diǎn),
∴點(diǎn)的倍相關(guān)圓半徑為,
∴,
∵,
∴,
∴點(diǎn)的倍相關(guān)圓半徑為,
∴直線與點(diǎn)的倍相關(guān)圓相切,
(3)①∵反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),
∴,
∴點(diǎn)B的坐標(biāo)為: ,
∵直線經(jīng)過(guò)點(diǎn)和 ,
設(shè)直線的解析式為,
把代入得:,
∴直線的解析式為:,
∵直線與直線關(guān)于軸對(duì)稱(chēng),
∴直線的解析式為:,
∵點(diǎn)在直線上,
設(shè)點(diǎn)C的坐標(biāo)為: ,
∴點(diǎn)的3倍相關(guān)圓的半徑是:,
故點(diǎn)的3倍相關(guān)圓的半徑是3;
②的最大值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=5,以AB為一邊向三角形外作正方形ABEF,正方形的中心為O, ,則BC邊的長(zhǎng)為_.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2﹣2和x軸交于A,B(點(diǎn)A在點(diǎn)B右邊)兩點(diǎn),和y軸交于點(diǎn)C,P為拋物線上的動(dòng)點(diǎn).
(1)求出A,C的坐標(biāo);
(2)求動(dòng)點(diǎn)P到原點(diǎn)O的距離的最小值,并求此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P在x軸下方的拋物線上運(yùn)動(dòng)時(shí),過(guò)P的直線交x軸于E,若△POE和△POC全等,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有若干間標(biāo)準(zhǔn)房,當(dāng)標(biāo)準(zhǔn)房的價(jià)格為200元時(shí),每天入住的房間數(shù)為60間,經(jīng)市場(chǎng)調(diào)查表明,該賓館每間標(biāo)準(zhǔn)房的價(jià)格在170~240元之間(含170元,240元)浮動(dòng)時(shí),每天入住的房間數(shù)(間)與每間標(biāo)準(zhǔn)房的價(jià)格(元)的數(shù)據(jù)如下表:
(元) | … | 190 | 200 | 210 | 220 | … |
(間) | … | 65 | 60 | 55 | 50 | … |
(1)根據(jù)所給數(shù)據(jù)在坐標(biāo)系中描出相應(yīng)的點(diǎn),并畫(huà)出圖象.
(2)求關(guān)于的函數(shù)表達(dá)式、并寫(xiě)出自變量的取值范圍.
(3)設(shè)客房的日營(yíng)業(yè)額為(元).若不考慮其他因素,問(wèn)賓館標(biāo)準(zhǔn)房的價(jià)格定為多少元時(shí).客房的日營(yíng)業(yè)額最大?最大為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】1995年聯(lián)合國(guó)教科文組織把每年4月23日確定為“世界讀書(shū)日”.某中學(xué)為了解全校1000名學(xué)生平均每天閱讀課外書(shū)報(bào)的時(shí)間,隨機(jī)調(diào)查了該校50名學(xué)生一周內(nèi)平均每天閱讀課外書(shū)報(bào)的時(shí)間,結(jié)果如下表:
時(shí)間(分) | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
人 數(shù) | 8 | 12 | 7 | 5 | 4 | 3 | 4 | 2 | 3 | 2 |
根據(jù)上述信息完成下列各題:
(1)在統(tǒng)計(jì)表(上表)中,眾數(shù)是 分,中位數(shù)是 分;
(2)估計(jì)該學(xué)校平均每天閱讀課外書(shū)報(bào)的時(shí)間不少于35分鐘的學(xué)生大約 人;
小明同學(xué)根據(jù)上述信息制作了如下頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)你完成下列問(wèn)題:
(3)頻數(shù)分布表中 , ;
(4)補(bǔ)全頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(﹣1,0)、B(3,0)兩點(diǎn),且交y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B、C重合),過(guò)M作MN∥y軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng);
(3)在(2)的條件下,連接NB,NC,是否存在點(diǎn)M,使△BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是半圓O中所對(duì)弦AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥AB交于點(diǎn)M,作射線PN交于點(diǎn)N,使得∠NPB=45°,連接MN.已知AB=6cm,設(shè)A,P兩點(diǎn)間的距離為xcm,M,N兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)M也與點(diǎn)A重合,當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),y的值為0)
小超根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小超的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,得到了y與x的幾組對(duì)應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 4.2 | 2.9 | 2.6 | 2.0 | 1.6 | 0 |
(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:當(dāng)MN=2AP時(shí),AP的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市青少年健康研究中心隨機(jī)抽取了本市1000名小學(xué)生和若干名中學(xué)生,對(duì)他們的視力狀況進(jìn)行了調(diào)查,并把調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖.(近視程度分為輕度、中度、高度三種)
(1)求這1000名小學(xué)生患近視的百分比.
(2)求本次抽查的中學(xué)生人數(shù).
(3)該市有中學(xué)生8萬(wàn)人,小學(xué)生10萬(wàn)人.分別估計(jì)該市的中學(xué)生與小學(xué)生患“中度近視”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓錐的底面半徑是2,母線長(zhǎng)是6.
(1)求這個(gè)圓錐的高和其側(cè)面展開(kāi)圖中∠ABC的度數(shù);
(2)如果A是底面圓周上一點(diǎn),從點(diǎn)A拉一根繩子繞圓錐側(cè)面一圈再回到A點(diǎn),求這根繩子的最短長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com