【題目】為推進課改,王老師把班級里60名學(xué)生分成若干小組,每小組只能是5人或6人,則有幾種分組方案(  )

A. 4B. 3C. 2D. 1

【答案】B

【解析】

根據(jù)題意設(shè)5人一組的有x個,6人一組的有y個,利用把班級里60名學(xué)生分成若干小組,進而得出等式求出即可.

解:設(shè)5人一組的有x個,6人一組的有y個,根據(jù)題意可得:

5x+6y60y

x0,y6符合題意,

x1,則y(不合題意);

x2,則y;(不合題意);

x3,則y(不合題意);

x4,則y(不合題意);

x5,則y(不合題意);

x6,則y5

x7,則y(不合題意);

x8,則y(不合題意);

x9,則y(不合題意);

x10,則y(不合題意);

x11,則y(不合題意);

x12,則y0

故有3種分組方案.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點DBC的平行線,與AB的延長線相交于點P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA

3)當AB=6,AC=8時,求線段PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1

(1)畫出△A1OB1

(2)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蘋果生產(chǎn)基地,用30名工人進行采摘或加工蘋果 ,每名工人只能做其中一項工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元;加工成罐頭出售每噸獲利10 000元.采摘的工人每人可采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設(shè)有x名工人進行蘋果采摘,全部售出后,總利潤為y元.

(1)yx的函數(shù)關(guān)系式;

(2)如何分配工人才能獲利最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量校園內(nèi)一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)應(yīng)用實踐小組做了如下的探索:

實踐:根據(jù)《自然科學(xué)》中的反射定律,利用一面鏡子和一根皮尺,設(shè)計如右示意圖的測量方案:把鏡子放在離樹(AB8.7米的點E處,然后沿著直線BE后退到點D,這是恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=2.7米,觀察者目高CD=1.6米,請你計算樹(AB)的高度(精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F分別是AD,BC邊上的點,AECF,∠EFB45°,若AB5,BC13,則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】常常聽說345”,是什么意思呢?它就是勾股定理,即直角三角形兩直角邊長a,b與斜邊長c之間滿足等式:a2+b2c2的一個最簡單特例.我們把滿足a2+b2c2的三個正整數(shù)ab,c,稱為勾股數(shù)組,記為(ab,c).

1)請在下面的勾股數(shù)組表中寫出m、np合適的數(shù)值:

a

b

c

a

b

c

3

4

5

4

3

5

5

12

m

6

8

10

7

24

25

p

15

17

9

n

41

10

24

26

11

60

61

12

35

37

平面直角坐標系中,橫、縱坐標均為整數(shù)的點叫做整點(格點).過x軸上的整點作y軸的平行線,過y軸上的整點作x軸的平行線,組成的圖形叫做正方形網(wǎng)格(有時簡稱網(wǎng)格),這些平行線叫做格邊,當一條線段AB的兩端點是格邊上的點時,稱為AB在格邊上.頂點均在格點上的多邊形叫做格點多邊形.在正方形網(wǎng)格中,我們可以利用勾股定理研究關(guān)于圖形面積、周長的問題,其中利用割補法、作圖法求面積非常有趣.

2)已知ABC三邊長度為4、13、15,請在下面的網(wǎng)格中畫出格點ABC并計算其面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MNAMMNM,BNMNN

(1)MN=AM+BN成立嗎?為什么?

(2)若過點C在△ABC內(nèi)作直線MN,AMMNMBNMNN,則AM、BNMN之間有什么關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面三行數(shù):

1、2、-4、8、-16、32、-64、……

0、3、-3、9、-15、33、-63、……

1、-57、-1731、-65、127、……

(1) 行的第8個數(shù)是___________,第行第n個數(shù)是___________(用n的式子表示)

(2) 取第、行的第10個數(shù)分別記為a、b、c,求abc的值

(3) 取每行數(shù)的第n個數(shù),這三個數(shù)中任意兩數(shù)之差的最大值為6146,則n__________

查看答案和解析>>

同步練習(xí)冊答案