精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD的對角線相交于點O,且點OBD的中點,若ABAD5,BD8,∠ABD=∠CDB,則四邊形ABCD的面積為( 。

A.40B.24C.20D.15

【答案】B

【解析】

根據等腰三角形的性質得到ACBD,∠BAO=DAO,得到AD=CD,推出四邊形ABCD是菱形,根據勾股定理得到AO=3,于是得到結論.

ABAD,點OBD的中點,

ACBD,∠BAO=∠DAO

∵∠ABD=∠CDB,

ABCD,

∴∠BAC=∠ACD,

∴∠DAC=∠ACD

ADCD,

ABCD

∴四邊形ABCD是菱形,

AB5,BOBD4,

AO3

AC2AO6,

∴四邊形ABCD的面積6×824,

故選:B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀下列例題的解題過程,并完成相關問題

例:如圖,在四邊形ABCD中,ADBC,∠B90°,AB8 cm,AD12cmBC18cm,點P從點A出發(fā),以1cm/s的速度向點D運動;點Q從點C同時出發(fā),以2cm/s的速度向點B運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.從運動開始,使PQCDPQCD,分別經過多長時間?為什么?

解:設經過ts時,PQCDPQCD,此時四邊形PQCD為平行四邊形.

PD=(12tcm,CQ2t cm,

12t2t.∴t4

∴當t4時,PQCD,且PQCD

設經過ts時,PQCD,分別過點P,DBC邊的垂線PE,DF,垂足分別為E,F

CFEQ時,四邊形PQCD為梯形(腰相等)或者平行四邊形.

∵∠B=∠A=∠DFB90°,

∴四邊形ABFD是矩形.∴ADBF

AD12 cm,BC18 cm,

CFBCBF6 cm

當四邊形PQCD為梯形(腰相等)時,

PD2BCAD)=CQ,

∴(12t)+122t.∴t8

∴當t8時,PQCD

當四邊形PQCD為平行四邊形時,由知當t4時,PQCD

綜上,當t4時,PQCD;當t4t8時,PQCD

問題1:在整個運動過程中是否存在t值,使得四邊形PQCD是菱形?若存在,請求出t值;若不存在,請說明理由.

問題2:從運動開始,當t取何值時,四邊形PQBA是矩形?

問題3:在整個運動過程中是否存在t值,使得四邊形PQBA是正方形?若存在,請求出t值;若不存在,請說明理由.

問題4:是否存在t,使得△DQC是等腰三角形?若存在,請求出t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知FGAB,CDAB,垂足分別為G,D,∠1=∠2,

求證:∠CED+ACB180°,

請你將小明的證明過程補充完整.

證明:∵FGAB,CDAB,垂足分別為G,D(已知)

∴∠FGB=∠CDB90°(   )

GFCD(   )

GFCD(已證)

∴∠2=∠BCD(   )

又∵∠1=∠2(已知)

∴∠1=∠BCD(   )

   (   )

∴∠CED+ACB180°(   )

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結果保留整數).
(參考數據:sin37°≈ ,tan37°≈ ,sin65°≈ ,tan65°≈

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某森林公園從正門到側門有一條公路供游客運動,甲徒步從正門出發(fā)勻速走向側門,出發(fā)一段時間開始休息,休息了0.6小時后仍按原速繼續(xù)行走.乙與甲同時出發(fā),騎自行車從側門勻速前往正門,到達正門后休息0.2小時,然后按原路原速勻速返回側門.圖中折線分別表示甲、乙到側門的路程y(km)與甲出發(fā)時間x(h)之間的函數關系圖象.根據圖象信息解答下列問題.

(1)求甲在休息前到側門的路程y(km)與出發(fā)時間x(h)之間的函數關系式.

(2)求甲、乙第一次相遇的時間.

(3)直接寫出乙回到側門時,甲到側門的路程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,平行四邊形OABC的頂點A的坐標為(﹣4,0),頂點B在第二象限,∠BAO=60°,BC交y軸于點D,DB:DC=3:1.若函數y= (k>0,x>0)的圖象經過點C,則k的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料;

課堂上,老師設計了一個活動:將一個4×4的正方形網格沿著網格線劃分成兩部分(分別用陰影和空白表示),使得這兩部分圖形是全等的,請同學們嘗試給出劃分的方法.約定:如果兩位同學的劃分結果經過旋轉、翻折后能夠重合,那么就認為他們的劃分方法相同.

小方、小易和小紅分別對網格進行了劃分,結果如圖①、圖②、圖③所示.

小方說:我們三個人的劃分方法都是正確的,但是將小紅的整個圖形(圖③)逆時針旋轉90后得到的劃分方法與我的劃分方法(圖①)是一樣的,應該認為是同一種方法,而小易的劃分方法與我的不同,

老師說:小方說得對.

完成下列問題:

(1)圖④的劃分方法是否正確?

(2)判斷圖⑤的劃分方法與圖②小易的劃分方法是否相同,并說明你的理由.

(3)請你再想出一種與已有方法不同的劃分方法,使之滿足上述條件,并在圖⑥中畫出來.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點A(a,b)在雙曲線y= 上,若a、b都是正整數,則圖象經過B(a,0)、C(0,b)兩點的一次函數的解析式(也稱關系式)為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在1~7月份,某地的蔬菜批發(fā)市場指導菜農生產和銷售某種蔬菜,并向他們提供了這種蔬菜每千克售價與每千克成本的信息如圖所示,則出售該種蔬菜每千克利潤最大的月份可能是(
A.1月份
B.2月份
C.5月份
D.7月份

查看答案和解析>>

同步練習冊答案