【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈ ,tan37°≈ ,sin65°≈ ,tan65°≈

【答案】解:過點B作BF⊥AE于點F.則BF=DE.

在Rt△ABF中,sin∠BAF= ∴BF=ABsin∠BAF=10× =6(m).
又在Rt△CDB中,tan∠CBD= ,∴CD=BDtan65°=10× ≈21(m)
∴CE=DE+CD=BF+CD=6+21=27(m).
答:大樓CE的高度是27m
【解析】作BF⊥AE于點F.則BF=DE,在直角△ABF中利用三角函數(shù)求得BF的長,在直角△CDB中利用三角函數(shù)求得CD的長,則CE即可求得.
【考點精析】本題主要考查了關(guān)于仰角俯角問題的相關(guān)知識點,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA為⊙O的切線,A為切點,直線PO交⊙O于點E,F(xiàn)過點A作PO的垂線AB垂足為D,交⊙O于點B,延長BO與⊙O交與點C,連接AC,BF.

(1)求證:PB與⊙O相切;
(2)是探究線段EF,OD,OP之間的數(shù)量關(guān)系,并加以證明;
(3)若tan∠F= ,求cos∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為(

A.13
B.15
C.17
D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要在寬為22米的九州大道AB兩邊安裝路燈,路燈的燈臂CD長2米,且與燈柱BC成120°角,路燈采用圓錐形燈罩,燈罩的軸線DO與燈臂CD垂直,當(dāng)燈罩的軸線DO通過公路路面的中心線時照明效果最佳,此時,路燈的燈柱BC高度應(yīng)該設(shè)計為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛經(jīng)營長途運輸?shù)呢涇囋诟咚俟返?/span>A處加滿油后,以每小時80千米的速度勻速行駛,前往B地,如表記錄的是貨車一次加滿油后油箱內(nèi)余油量y(升)與行駛時間x(時)之間的關(guān)系:

行駛時間x/

0

1

2

2.5

余油量y/

100

80

60

50

yx的函數(shù)關(guān)系式為_____,自變量x的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查七年級學(xué)生了解校園防欺凌知識的情況,小剛在主題班會后就本班學(xué)生對校園防欺凌知識的了解程度進行了一次調(diào)查統(tǒng)計:A:熟悉,B:較了解,C:知道.如下是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:

1)求該班共有多少名學(xué)生;

2)在條形圖中將表示“知道”的部分補充完整

3)在扇形統(tǒng)計圖中,求“較了解”部分所對應(yīng)的圓心角的度數(shù);

4)如果七年級共有460名同學(xué),請你估算全年級對校園防欺凌知識“熟悉”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線相交于點O,且點OBD的中點,若ABAD5,BD8,∠ABD=∠CDB,則四邊形ABCD的面積為(  )

A.40B.24C.20D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A在函數(shù)y1=﹣ (x>0)的圖象上,點B在直線y2=kx+1+k(k為常數(shù),且k≥0)上.若A,B兩點關(guān)于原點對稱,則稱點A,B為函數(shù)y1 , y2圖象上的一對“友好點”.請問這兩個函數(shù)圖象上的“友好點”對數(shù)的情況為( )
A.有1對或2對
B.只有1對
C.只有2對
D.有2對或3對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線L:y=﹣ (x+t)(x﹣t+4)與x軸只有一個交點,則拋物線L與x軸的交點坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊答案