【題目】如圖,在圓中有折線(xiàn),,,則弦的長(zhǎng)為_____

【答案】10

【解析】

ODAB垂足為D,利用垂徑定理得AB2BD ,OE//ABBCE,構(gòu)造等邊△COE ,過(guò)E點(diǎn)作EFAB,垂足為F,RtBEF,而∠B60° ,可得BFBE ,再根據(jù)BDBFDF,求BD.

如圖,作ODAB垂足為D,作OE//ABBCE,過(guò)E點(diǎn)作EFAB,垂足為F

OE//AB,∴△COE為等邊三角形,∴OECEOC4,∵ODAB,EFAB,∴ DFOE4,BEBCCE2,RtBEF,∵∠B60°,∴BFBE1,∴BDBFDF145,由垂徑定理,得AB2BD10,故答案為10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8)將一張長(zhǎng)方形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.

(1)求∠1的度數(shù);

(2)求證:EFG是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在邊DC上,DE=7,EC=3,把線(xiàn)段AE繞點(diǎn)A旋轉(zhuǎn)后使點(diǎn)E落在直線(xiàn)BC上的點(diǎn)P處,則CP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1的絕對(duì)值是___________,相反數(shù)是___________

2)計(jì)算下列各式:

3)無(wú)理數(shù)的整數(shù)部分是(

A1 B2 C3 D4

4)對(duì)于實(shí)數(shù)a,如果將不大于a的最大整數(shù)記為,則=_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn))的對(duì)稱(chēng)軸為直線(xiàn),與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:①;②方程的兩個(gè)根是,;④當(dāng)時(shí),的取值范圍是;⑤當(dāng)時(shí),增大而增大其中結(jié)論正確的個(gè)數(shù)是(  。

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格,線(xiàn)段AB的端點(diǎn)在格點(diǎn)上.

(1)請(qǐng)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系xOy,使得A點(diǎn)的坐標(biāo)為(3,1),在此坐標(biāo)系下,B點(diǎn)的坐標(biāo)為 ;

(2)將線(xiàn)段BA繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得線(xiàn)段BC,畫(huà)出BC;在第(1)題的坐標(biāo)系下,C點(diǎn)的坐標(biāo)為 ;

(3)在第(1)題的坐標(biāo)系下,二次函數(shù)y=ax2+bx+c的圖象過(guò)O、B、C三點(diǎn),D為此拋物線(xiàn)的頂點(diǎn)。試求出拋物線(xiàn)解析式及D點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),拋物線(xiàn)x軸交于A(1,0)、B(t,0)(t >0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),若拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=1,

(1)求拋物線(xiàn)的函數(shù)解析式;

(2 若點(diǎn)D是拋物線(xiàn)BC段上的動(dòng)點(diǎn),且點(diǎn)D到直線(xiàn)BC的距離為,求點(diǎn)D的坐標(biāo)

(3)如圖(2),若直線(xiàn)y=mx+n經(jīng)過(guò)點(diǎn)A,交y軸于點(diǎn)E(0,1),點(diǎn)P是直線(xiàn)AE下方拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)Px軸的垂線(xiàn)交直線(xiàn)AE于點(diǎn)M,點(diǎn)N在線(xiàn)段AM延長(zhǎng)線(xiàn)上,且PM=PN,是否存在點(diǎn)P,使△PMN的周長(zhǎng)有最大值?若存在,求出點(diǎn)P的坐標(biāo)及△PMN的周長(zhǎng)的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A市有近20年的馬拉松比賽歷史,過(guò)去全程馬拉松名額一直相對(duì)較少。而近幾年,這一現(xiàn)狀大大改變,很多想?yún)⒓尤恬R拉松(簡(jiǎn)稱(chēng)全馬)的跑者報(bào)不上名。所以該城市近兩年也大幅增加全馬的名額。2017年,參加全馬的人數(shù)比半馬的人少,但是2018年,2019年參加全馬的人數(shù)呈上升趨勢(shì),且每年比前一年均增加25%(即2018年比2017年增加25%2019年比2018年增加25%),2019年,有12500全馬參賽者。

1)求2017年、2018全馬參賽人數(shù);

2)據(jù)贊助食物的某商家反映:2017年與2018年該商家分別給參加全馬半馬的參賽者提供了不同價(jià)格的食物,每個(gè)全馬參賽者獲得的食物價(jià)值高于半馬參賽者,2017年,商家提供食物共用去22萬(wàn)元;這兩年商家是按同一個(gè)標(biāo)準(zhǔn)分別給全馬半馬參賽者提供食物(人太多,標(biāo)準(zhǔn)不可輕易提高),即使這樣,2018年,雖然參加馬拉松比賽的總?cè)藬?shù)與2017年一樣多,但是由于全馬參賽者人數(shù)剛好與半馬參賽者人數(shù)調(diào)換了,贊助商比2017年多提供了p萬(wàn)元的食物;商家發(fā)現(xiàn)這p萬(wàn)元的食物剛好可以供400全馬參賽者和400半馬參賽者享用。求p的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一元二次方程滿(mǎn)足,那么我們稱(chēng)這個(gè)方程為鳳凰方程.已知鳳凰方程,且有兩個(gè)相等的實(shí)數(shù)根,則下列結(jié)論正確的是 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案