【題目】如圖,在△ABC中,AD是高,E、F分別是AB、AC的中點.

1AB12,AC9,求四邊形AEDF的周長;

2EFAD有怎樣的位置關系?證明你的結論.

【答案】121;(2EFAD,證明詳見解析.

【解析】

(1)根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半可得ED=EB=ABDF=FC=AC,再由AB=12,AC=9,可得答案;

(2)根據(jù)到線段兩端點距離相等的點在線段的垂直平分線證明.

(1)∵AD是高,

∴∠ADB=∠ADC=90°,

E、F分別是ABAC的中點,

ED=EB=AB,DF=FC=AC,

AB=12,AC=9,

AE+ED=12,AF+DF=9

∴四邊形AEDF的周長為12+9=21;

(2)EFAD

理由:∵DE=AE,DF=AF

∴點E、F在線段AD的垂直平分線上,

EFAD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格圖中,若每個小正方形的邊長是1,關于點對稱.

1)畫出

2的位置關系是

3)點在直線上,的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小紅爸爸從家騎電瓶車出發(fā),沿一條直路到相距2400m的學校接小紅回家,小紅爸爸出發(fā)的同時,小紅以96m/min的速度從學校沿同一條道路步行回家,小紅爸爸趕到學校校門口等候2min后知道小紅已離校,立即沿原路以原速返回,設他們出發(fā)的時間為t min,圖示中的折線OABD表示小紅爸爸與家之間的距離S1t之間的函數(shù)關系,線段EF表示小紅與家之間的距離S2t之間的函數(shù)關系,則小紅爸爸從家出發(fā)在返回途中追上小紅的時間是(

A.12minB.16minC.18minD.20min

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有一張圓心角為108°,半徑為4cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為1cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的面積為( ).

A.0.8πcm2 B.3.2πcm2 C.4πcm2 D.4.8πcm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】規(guī)定sin(-x)=-sinx,cos(-x)=cosx,sinx+y)=sinx·cosycosx·siny.據(jù)此判斷下列等式成立的是_________(填序號)

cos(-60°)=—cos60°=

sin75°sin30°+45°=sin30°·cos45°+cos30°·sin45°=

③sin2xsinx+x)=sinx·cosx+cosx·sinx2sinx·cosx

④sinxy)=sinx·cosycosx·siny

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,∠ACB90°,ACBC4,DAB的中點,點E是射線CB上的動點,連接DE,DFDE交射線AC于點F

1)若點E在線段CB上.

求證:AFCE

連接EF,試用等式表示AFEB、EF這三條線段的數(shù)量關系,并說明理由.

2)當EB3時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,反比例函數(shù)的圖象經(jīng)過點,

(1)求代數(shù)式mn的值;

(2)若二次函數(shù)的圖象經(jīng)過點B,求代數(shù)式的值;

(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象只有一個交點,且該交點在直線的下方,結合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀:

對于兩個不等的非零實數(shù).若分式的值為零,則又因為.所以關于的方程有兩個根分別為

應用上面的結論解答下列問題:

1)方程的兩個解中較小的一個為    

2)關于解的方程,首先我們兩邊同加,則 ,兩個解分別為, ,

3)關于的方程的兩個解分別為,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點P是等邊三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10,若將PAC繞點A逆時針旋轉后,得到P′AB,則APB等于(

A150° B105° C120° D90°

查看答案和解析>>

同步練習冊答案