【題目】根據(jù)道路管理規(guī)定,在廣州某段筆直公路上行駛的車輛,限速40千米/時;已知交警測速點到該公路點的距離為米,,(如圖所示),現(xiàn)有一輛汽車由方向勻速行駛,測得此車從點行駛到點所用的時間為2秒.

1)求測速點到該公路的距離.

2)通過計算判斷此車是否超速.(參考數(shù)據(jù):,

【答案】110米;(2)超速了.

【解析】

1)過M,在直角三角形AMN中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出MN的長,即可得到結(jié)果.

2)由三角形AMN為等腰直角三角形得到米,在直角三角形BMN中,利用銳角三角函數(shù)定義求出BN的長,由AN+NB求出AB的長,根據(jù)路程除以時間得到速度,即可做出判斷.

1)過M

RtAMN中,

,即

解得

則測速點到該公路的距離為10米.

2)由(1)知:(米)

RtMNB中,

,得

解得(米)

(米)

∴汽車從AB的平均速度為(米/秒)

11.67/=42.012千米/40千米/

∴此車超速.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1,a),B兩點,與x軸交于點C

(1)a,k的值及點B的坐標;

(2)若點Px軸上,且SACPSBOC,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的圓于點,過點于點,交的延長線于點

1)求證:;

2)求證:是圓的切線;

3)若圓的半徑為3,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線

(1)拋物線的對稱軸為直線________.

(2)當時,函數(shù)值的取值范圍是,求的值.

(3)當時,解決下列問題.

①拋物線上一點軸的距離為6,求點的坐標.

②將該拋物線在間的部分記為,將在直線下方的部分沿翻折,其余部分保持不變,得到的新圖象記為,設(shè)的最高點、最低點的縱坐標分別為,若,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠有甲種原料69千克,乙種原料52千克,現(xiàn)計劃用這兩種原料生產(chǎn)AB兩種型號的產(chǎn)品共80件,已知每件A型號產(chǎn)品需要甲種原料0.6千克,乙種原料0.9千克;每件B型號產(chǎn)品需要甲種原料1.1千克,乙種原料0.4千克.請解答下列問題:

1)該工廠有哪幾種生產(chǎn)方案?

2)在這批產(chǎn)品全部售出的條件下,若1A型號產(chǎn)品獲利35元,1B型號產(chǎn)品獲利25元,(1)中哪種方案獲利最大?最大利潤是多少?

3)在(2)的條件下,工廠決定將所有利潤的25%全部用于再次購進甲、乙兩種原料,要求每種原料至少購進4千克,且購進每種原料的數(shù)量均為整數(shù).若甲種原料每千克40元,乙種原料每千克60元,請直接寫出購買甲、乙兩種原料之和最多的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點,BEAGE,DFAGF,連接DE.

(1)求證:△ABE≌△DAF;

(2)若AF=1,四邊形ABED的面積為6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形的拱橋,當拱頂離水面3m時,水面寬6m

(1)建立如圖所示的平面直角坐標系,求拋物線的解析式;

(2)如果水面上升1m,則水面寬度減少多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,ACCB2,以BC為邊向外作正方形BCDE,動點MA點出發(fā),以每秒1個單位的速度沿著ACD的路線向D點勻速運動(M不與A、D重合);過點M作直線lAD,l與路線ABD相交于N,設(shè)運動時間為t秒:

1)填空:當點MAC上時,BN   (用含t的代數(shù)式表示);

2)當點MCD上時(含點C),是否存在點M,使DEN為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由;

3)過點NNFED,垂足為F,矩形MDFNABD重疊部分的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,DE平分∠ADCBC邊于點E,PDE上的一點(PEPD),PMPD,PMAD邊于點M.

(1)若點F是邊CD上一點,滿足PFPN,且點N位于AD邊上,如圖1所示.

求證:①PN=PF;DF+DN=DP;

(2)如圖2所示,當點FCD邊的延長線上時,仍然滿足PFPN,此時點N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案