【題目】根據(jù)衛(wèi)生防疫部門(mén)要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開(kāi)排水孔開(kāi)始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內(nèi)的水量Q(m2)和開(kāi)始排水后的時(shí)間t(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:

(1)暫停排水需要多少時(shí)間?排水孔排水速度是多少?
(2)當(dāng)2≤t≤3.5時(shí),求Q關(guān)于t的函數(shù)表達(dá)式.

【答案】
(1)解:暫停排水需要的時(shí)間為:2﹣1.5=0.5(小時(shí)).

∵排水?dāng)?shù)據(jù)為:3.5﹣0.5=3(小時(shí)),一共排水900m3,

∴排水孔排水速度是:900÷3=300m3/h;


(2)解:當(dāng)2≤t≤3.5時(shí),設(shè)Q關(guān)于t的函數(shù)表達(dá)式為Q=kt+b,易知圖象過(guò)點(diǎn)(3.5,0).

∵t=1.5時(shí),排水300×1.5=450,此時(shí)Q=900﹣450=450,

∴(2,450)在直線Q=kt+b上;

把(2,450),(3.5,0)代入Q=kt+b,

,解得

∴Q關(guān)于t的函數(shù)表達(dá)式為Q=﹣300t+1050.


【解析】本題考查了一次函數(shù)的應(yīng)用,主要考查學(xué)生能否把實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,題目比較典型,是一道比較好的題目.(1)暫停排水時(shí),游泳池內(nèi)的水量Q保持不變,圖象為平行于橫軸的一條線段,由此得出暫停排水需要的時(shí)間;由圖象可知,該游泳池3個(gè)小時(shí)排水900(m3),根據(jù)速度公式求出排水速度即可;(2)當(dāng)2≤t≤3.5時(shí),設(shè)Q關(guān)于t的函數(shù)表達(dá)式為Q=kt+b,易知圖象過(guò)點(diǎn)(3.5,0),再求出(2,450)在直線y=kt+b上,然后利用待定系數(shù)法求出表達(dá)式即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E在邊DC上,DE:EC=3:1,連接AE交BD于點(diǎn)F,則△DEF的面積與△BAF的面積之比為(
A.3:4
B.9:16
C.4:9
D.1:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動(dòng)點(diǎn)P在拋物線上.

(1)b= , c= , 點(diǎn)B的坐標(biāo)為;(直接填寫(xiě)結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是反比例函數(shù)圖象上的兩個(gè)點(diǎn).

(1)求m和k的值
(2)若點(diǎn)C(-1,0),連結(jié)AC,BC,求△ABC的面積
(3)根據(jù)圖象直接寫(xiě)出一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B的坐標(biāo)為(3,4),D是OA的中點(diǎn),點(diǎn)E在AB上,當(dāng)△CDE的周長(zhǎng)最小時(shí),點(diǎn)E的坐標(biāo)為( 。

A.(3,1)
B.(3,
C.(3,
D.(3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:(要求保留作圖痕跡,不寫(xiě)作法)

1)作△ABCBC邊上的垂直平分線EF(交AC于點(diǎn)E,交BC于點(diǎn)F);

2)連結(jié)BE,若AC=10,AB=6,求△ABE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程2x2+x﹣a=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x2﹣2x﹣1|,若m>n>1,且f(m)=f(n),則mn的取值范圍為(
A.
B.
C.(1,3)
D.(1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案