【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點.
(1)求證:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面積.
【答案】(1)證明見解析;(2)8.
【解析】
試題分析:(1)由矩形的性質(zhì)得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,證出∠E=∠F,AE=CF,由ASA證明△CFP≌△AEQ,即可得出結(jié)論;
(2)證明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=,由等腰直角三角形的性質(zhì)和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面積.
試題解析:(1)證明:∵四邊形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,∵∠C=∠A,CF=AE,∠F=∠E,∴△CFP≌△AEQ(ASA),∴CP=AQ;
(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ==,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面積=ABAD=2×4=8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、O、E在同一直線上,∠AOB=40°,∠COD=28°,OD平分∠COE.
(1)求∠COB的度數(shù);
(2)求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列語句:
①對頂角不相等;②今天天氣很熱!;③同位角相等;④畫∠AOB的平分線OC;⑤這個角等于30°嗎?在這些語句是,屬于命題的是_______(填寫序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中∠C=90°,線段AD是△ABC的角平分線,直線DE是線段AB的垂直平分線.若DE=1cm,DB=2cm,AC= cm.求點C到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公園元旦期間,前往參觀的人非常多.這期間某一天某一時段,隨機調(diào)查了部分入園游客,統(tǒng)計了他們進園前等候檢票的時間,并繪制成如下圖表.表中“10~20”表示等候檢票的時間大于或等于10min而小于20min,其它類同.
(1)這里采用的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),樣本容量是;
(2)表中a= , b= , 并請補全頻數(shù)分布直方圖;
(3)在調(diào)查人數(shù)里,若將時間分段內(nèi)的人數(shù)繪成扇形統(tǒng)計圖,則“40~50”的圓心角的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為( )
A.7
B.14
C.17
D.20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班同學為了解2011年某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理.請解答以下問題:
(1)把下面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
月均用水量x(t) | 頻數(shù)(戶) | 頻率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | 0.24 | |
10<x≤15 | 16 | 0.32 |
15<x≤20 | 10 | 0.20 |
20<x≤25 | 4 | |
25<x≤30 | 2 | 0.04 |
(2)求該小區(qū)用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過20t的家庭大約有多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com