【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點.

(1)求證:CP=AQ;

(2)若BP=1,PQ=,AEF=45°,求矩形ABCD的面積.

【答案】(1)證明見解析;(2)8

【解析】

試題分析:(1)由矩形的性質(zhì)得出A=ABC=C=ADC=90°,AB=CD,AD=BC,ABCD,ADBC,證出E=F,AE=CF,由ASA證明CFP≌△AEQ,即可得出結(jié)論;

(2)證明BEP、AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=,由等腰直角三角形的性質(zhì)和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面積.

試題解析:(1)證明:四邊形ABCD是矩形,∴∠A=ABC=C=ADC=90°,AB=CD,AD=BC,ABCD,ADBC,∴∠E=F,BE=DF,AE=CF,在CFP和AEQ中,∵∠C=A,CF=AE,F=E∴△CFP≌△AEQ(ASA),CP=AQ;

(2)解:ADBC,∴∠PBE=A=90°,∵∠AEF=45°,∴△BEP、AEQ是等腰直角三角形,BE=BP=1,AQ=AE,PE=BP=,EQ=PE+PQ==AQ=AE=3,AB=AE﹣BE=2,CP=AQ,AD=BC,DQ=BP=1,AD=AQ+DQ=3+1=4,矩形ABCD的面積=ABAD=2×4=8.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=﹣ ,b=10.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、O、E在同一直線上,∠AOB=40°,∠COD=28°,OD平分∠COE.

(1)求∠COB的度數(shù);
(2)求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列語句:

①對頂角不相等;②今天天氣很熱!;③同位角相等;④畫∠AOB的平分線OC;⑤這個角等于30°嗎?在這些語句是,屬于命題的是_______(填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中∠C=90°,線段AD是△ABC的角平分線,直線DE是線段AB的垂直平分線.若DE=1cm,DB=2cm,AC= cm.求點C到直線AD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD中一條對角線分∠A為35°和45°,則∠B=______________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公園元旦期間,前往參觀的人非常多.這期間某一天某一時段,隨機調(diào)查了部分入園游客,統(tǒng)計了他們進園前等候檢票的時間,并繪制成如下圖表.表中“10~20”表示等候檢票的時間大于或等于10min而小于20min,其它類同.

(1)這里采用的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),樣本容量是;
(2)表中a= , b= , 并請補全頻數(shù)分布直方圖;
(3)在調(diào)查人數(shù)里,若將時間分段內(nèi)的人數(shù)繪成扇形統(tǒng)計圖,則“40~50”的圓心角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為(
A.7
B.14
C.17
D.20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九(1)班同學為了解2011年某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理.請解答以下問題:
(1)把下面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;

月均用水量x(t)

頻數(shù)(戶)

頻率

0<x≤5

6

0.12

5<x≤10

0.24

10<x≤15

16

0.32

15<x≤20

10

0.20

20<x≤25

4

25<x≤30

2

0.04



(2)求該小區(qū)用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過20t的家庭大約有多少戶?

查看答案和解析>>

同步練習冊答案