【題目】已知,射線分別和直線交于點,射線分別和直線交于點.(點與三點不重合).連接.請你根據(jù)題意畫出圖形并用等式直接寫出、、之間的數(shù)量關系.

【答案】見解析

【解析】

分三種情況,根據(jù)平行線的性質(zhì)及三角形外角的性質(zhì)求解即可:當點在線段上時,當點PMB上運動時,當點PAN上運動時.

解:設∠BDP=α、∠ACP=β、∠CPD=γ.

當點在線段上時,∠γ=α+∠β,即.

理由:過點PPFl1(如圖1),

l1l2,

PFl2

∴∠α=DPF,∠β=CPF,

∴∠γ=DPF+CPF=α+∠β;

當點PMB上運動時,∠β=∠γ+∠α,即.

理由:如圖2,

l1l2

∴∠β=CFD,

∵∠CFD是△DFP的外角,

∴∠CFD=∠α+∠γ

∴∠β=∠γ+∠α;

同理可得,當點PAN上運動時,∠α=∠γ+∠β,即.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M是ABC的邊BC的中點,AN平分BAC,BNAN于點N,延長BN交AC于點D,已知AB=10,BC=15,MN=3

(1)求證:BN=DN;

(2)求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)(方法回顧)證明:三角形中位線定理.

已知:如圖1中,DE分別是AB、AC的中點.

求證:,

證明:如圖1,延長DE到點F,使得,連接CF;

請繼續(xù)完成證明過程;

2)(問題解決)

如圖2,在矩形ABCD中,EAD的中點,GF分別為AB、CD邊上的點,若,,求GF的長.

3)(思維拓展)

如圖3,在梯形ABCD中,,,,EAD的中點,G、F分別為ABCD邊上的點,若,,求GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個長方形運動場被分隔成A,B,A,B,C共5個區(qū),A區(qū)是邊長為a m的正方形,C區(qū)是邊長為c m的正方形.

(1)列式表示每個B區(qū)長方形場地的周長,并將式子化簡;

(2)列式表示整個長方形運動場的周長,并將式子化簡;

(3)如果a=40,c=10,求整個長方形運動場的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一條直線過點,且與拋物線交于兩點,其中點的橫坐標是.

⑴求這條直線的函數(shù)關系式及點的坐標 ;

⑵在軸上是否存在點 ,使得是直角三角形?若存在,求出點的坐標,若不存在,請說明理由;

⑶過線段上一點,作軸,交拋物線于點,點在第一象限;點,當點的橫坐標為何值時, 的長度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格中每個小正方形邊長為1,△ABC的頂點都在格點(網(wǎng)格線的交點)上.將△ABC向左平移2格,再向上平移3格,得到△ABC′.

(1)請在圖中畫出平移后的△ABC′;

(2)畫出平移后的△ABC′的中線BD′;

(3)若連接BB′,CC′,則這兩條線段的關系是_______;

(4)ABC的面積為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,,.把一條長為2019個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A-B-C-D-A…的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備租用一批汽車,現(xiàn)有甲、乙兩種客車,甲種客車每輛載客量45人,乙種客車每輛載客量30.已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760.1輛甲種客車和1輛乙種客車的租金分別是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國慶期間,某電影院裝修后重新開業(yè),試營業(yè)期間統(tǒng)計發(fā)現(xiàn),影院每天售出的電影票張數(shù)y(張)與電影票售價(元/張)之間滿足一次函數(shù)關系: 是整數(shù),影院每天運營成本為1600元,設影院每天的利潤為w(元)(利潤=票房收入運營成本).

1)試求w之間的函數(shù)關系式;

2)影院將電影票售價定為多少時,每天獲利最大?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案