【題目】如圖,M是ABC的邊BC的中點(diǎn),AN平分BAC,BNAN于點(diǎn)N,延長(zhǎng)BN交AC于點(diǎn)D,已知AB=10,BC=15,MN=3

(1)求證:BN=DN;

(2)求ABC的周長(zhǎng).

【答案】解:(1)證明:在ABN和ADN中,,

∴△ABN≌△ADN(ASA)。

BN=DN。

(2)∵△ABN≌△ADN,AD=AB=10,DN=NB。

點(diǎn)M是BC中點(diǎn),MN是BDC的中位線。

CD=2MN=6。

∴△ABC的周長(zhǎng)=AB+BC+CD+AD=10+15+6+10=41。

解析(1)證明ABN≌△ADN,即可得出結(jié)論。

(2)先判斷MN是BDC的中位線,從而得出CD,由(1)可得AD=AB=10,從而計(jì)算周長(zhǎng)即可。 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱軸是直線x=1.

b2>4ac4a-2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(-2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1y2

上述4個(gè)判斷中,正確的是(  )

A. ①② B. ①④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第次從原點(diǎn)運(yùn)動(dòng)到點(diǎn),第次接著運(yùn)動(dòng)到點(diǎn),第次接著運(yùn)動(dòng)到點(diǎn),按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第次運(yùn)動(dòng)后,動(dòng)點(diǎn)的坐標(biāo)是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC⊙O的直徑,A是弦BD延長(zhǎng)線上一點(diǎn),切線DE平分ACE。

1求證:AC⊙O的切線;

2)若AD:DB=3:2AC=15,⊙O的直徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對(duì)角線AC

重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長(zhǎng)為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連接CF

1)求證:四邊形BCFE是菱形;

2)若CE=4,BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動(dòng)適應(yīng)社會(huì),促進(jìn)書本知識(shí)和生活經(jīng)驗(yàn)的深度融合,我市某中學(xué)決定組織部分班級(jí)去赤壁開展研學(xué)旅行活動(dòng),在參加此次活動(dòng)的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表所示.

甲種客車

乙種客車

載客量/(人/輛)

30

42

租金/(元/輛)

300

400

學(xué)校計(jì)劃此次研學(xué)旅行活動(dòng)的租車總費(fèi)用不超過3100元,為了安全,每輛客車上至少要有2名老師.

(1)參加此次研學(xué)旅行活動(dòng)的老師和學(xué)生各有多少人?

(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為   輛;

(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于實(shí)數(shù)ab,我們可以用min{a,b}表示a,b兩數(shù)中較小的數(shù),例如min{3,-1}=-1,min{22}2. 類似地,若函數(shù)y1y2都是x的函數(shù),則ymin{y1y2}表示函數(shù)y1y2取小函數(shù)

1)設(shè)y1x,y2,則函數(shù)ymin{x, }的圖像應(yīng)該是 中的實(shí)線部分.

2)請(qǐng)?jiān)谙聢D中用粗實(shí)線描出函數(shù)ymin{(x2)2, (x2)2}的圖像,并寫出該圖像的三條不同性質(zhì):

;

;

;

3)函數(shù)ymin{(x4)2(x2)2}的圖像關(guān)于 對(duì)稱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,射線分別和直線交于點(diǎn),射線分別和直線交于點(diǎn).點(diǎn)(點(diǎn)與三點(diǎn)不重合).連接.請(qǐng)你根據(jù)題意畫出圖形并用等式直接寫出、、之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案