【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象與x軸相交于點A、C,與y軸相交于點B,A(,0),且△AOB∽△BOC.
(1)求C點坐標(biāo)、∠ABC的度數(shù)及二次函數(shù)y=ax2+bx+3的關(guān)系式;
(2)在線段AC上是否存在點M(m,0).使得以線段BM為直徑的圓與邊BC交于P點(與點B不同),且以點P、C、O為頂點的三角形是等腰三角形?若存在,求出m的值;若不存在,請說明理由.
【答案】(1)y= ;(2)m的值為或-1
【解析】
(1)由二次函數(shù)y=ax2+bx+3的解析式,首先求出B點坐標(biāo),然后由△AOB∽△BOC,根據(jù)相似三角形的對應(yīng)邊成比例,求出OC的長度,得出C點坐標(biāo);根據(jù)相似三角形的對應(yīng)角相等得出∠OAB=∠OBC,從而得出∠ABC=90°;由y=ax2+bx+3圖象經(jīng)過點A(-,0),C(4,0),運用待定系數(shù)法即可求出此二次函數(shù)的關(guān)系式;
(2)如果以點P、C、O為頂點的三角形是等腰三角形,那么分三種情況討論:①CP=CO;②PC=PO;③OC=OP.針對每一種情況,都應(yīng)首先判斷M點是否在線段AC上,然后根據(jù)相似三角形的對應(yīng)邊成比例求出m的值.
(1)由題意,得B(0,3),
∵△AOB∽△BOC,
∴∠OAB=∠OBC,
,
∴OC=4,∴C(4,0);
∴∠OAB+∠OBA=90°,
∴∠OBC+∠OBA=90°,
∴∠ABC=90°;
∵y=ax2+bx+3圖象經(jīng)過點A(- ,0),C(4,0),
∴,
∴ ,
∴y=
(2)①如圖1,當(dāng)CP=CO時,點P在BM為直徑的圓上,
因為BM為圓的直徑,
∴∠BPM=90°,
∴PM∥AB,
∴△CPM∽△CBA,
∴CM:CA=CP:CB,
CM:6.25=4:5,
∴CM=5,
∴m=4-5=-1;
②如圖2,當(dāng)PC=PO時,點P在OC垂直平分線上,
得PC=BC=2.5,
由△CPM∽△CBA,得CM= ,
∴m=
③當(dāng)OC=OP時,M點不在線段AC上.
綜上所述,m的值為或-1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD和菱形BEFG中,點A、B、E在同一直線上,P是線段DF的中點,連接PG,PC.若∠ABC=∠BEF=60°,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預(yù)計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應(yīng)如何組織進貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對“你最認(rèn)可的四大新生事物”進行調(diào)查,隨機調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)根據(jù)圖中信息求出m=______,n=______;
(2)請你幫助他們將這兩個統(tǒng)計圖補全;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生中,大約有多少人最認(rèn)可“微信”這一新生事物?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F.則EF的最小值為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC=3,BC=2,BC邊上的高AO,點D為射線AO上一點,一動點P從點A出發(fā),沿AD﹣DC運動,到達點C停止,動點P在AD上運動速度為3個單位每秒,動點P在CD上運動速度為1個單位每秒,則當(dāng)AD=____時,運動時間最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為4,∠DAB=60°,E為BC的中點,在對角線AC上存在一點P,使△PBE的周長最小,則△PBE的周長的最小值為( )
A. +1B. C. +1D. +2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,對于P(a,b),若點P'的坐標(biāo)為(ka+b, )(其中k為常數(shù)且k≠0),則稱點P'為點P的“k的和諧點” .已知點A在函數(shù)的圖像上運動,且點A是點B的“的和諧點”,若Q(-2, 0),則BQ的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=x+1與y軸交于點A0,過點A0作x軸的平行線交直線l2:y=點B1,過點B1作y軸的平行線交直線l1于點A1,以A0,B1,A1為頂點構(gòu)造矩形A0B1A1M0;再過點A1作x軸平行線交直線l2于點B2,過點B2作y軸的平行線交直線l1于點A2,以A1,B2,A2為頂點構(gòu)造矩形A1B2A2M1;…;照此規(guī)律,直至構(gòu)造矩形AnBn+1An+1Mn,則矩形AnBn+1An+1Mn的周長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com