【題目】如圖,已知,等腰RtOAB中,∠AOB=90°,等腰RtEOF中,∠EOF=90°,連結(jié)AE、BF

求證:(1AE=BF;(2AEBF

【答案】見解析

【解析】

1)可以把要證明相等的線段AE,CF放到AEOBFO中考慮全等的條件,由兩個(gè)等腰直角三角形得AO=BOOE=OF,再找夾角相等,這兩個(gè)夾角都是直角減去∠BOE的結(jié)果,所以相等,由此可以證明AEO≌△BFO

2)由(1)知:∠OAC=OBF,∴∠BDA=AOB=90°,由此可以證明AEBF

解:(1)證明:在AEOBFO中,

RtOABRtEOF等腰直角三角形,

AO=OB,OE=OF,∠AOE=90°-BOE=BOF,

∴△AEO≌△BFO,

AE=BF;

2)延長(zhǎng)AEBFD,交OBC,則∠BCD=ACO

由(1)知:∠OAC=OBF,

∴∠BDA=AOB=90°,

AEBF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE⊥BCE,AF⊥CDF,BD分別與AE、AF相交于G、H

1)在圖中找出與△ABE相似的三角形,并說明理由;

2)若AG=AH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn)A0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45

1)求一次函數(shù)y=kx+b的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AC、BD交于點(diǎn)O,過點(diǎn)O作直線EF、GH,分別交ABCD的四條邊于E、G、F、H四點(diǎn),連接EG、GF、FH、HE.

(1)如圖,四邊形EGFH的形狀是___;

(2)如圖,當(dāng)EF⊥GH時(shí),四邊形EGFH的形狀是___

(3)如圖,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是___;

(4)如圖,在(3)的條件下,若AC⊥BD,四邊形EGFH的形狀是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明從點(diǎn)A出發(fā),前進(jìn)10m后向右轉(zhuǎn)20°,再前進(jìn)10m后又向右轉(zhuǎn)20°,這樣一直下去,直到他第一次回到出發(fā)點(diǎn)A為止,他所走的路徑構(gòu)成了一個(gè)多邊形.

(1)小明一共走了多少米?

(2)這個(gè)多邊形的內(nèi)角和是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形OABCDE中,點(diǎn)E(﹣2,0),將該正六邊形向右平移a(a>0)個(gè)單位后,恰有兩個(gè)頂點(diǎn)落在反比例函數(shù)y=(k>0)的圖象上,則k的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)E△ABC內(nèi)一點(diǎn),若∠AEB=∠CED=90°,AE=BE,CE=DE=2,則圖中陰影部分的面積等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,活動(dòng)課上,小玥想要利用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量某個(gè)建筑地所在山坡AE的高度,她先在山腳下的點(diǎn)E處測(cè)得山頂A的仰角是30°,然后,她沿著坡度i=1:1的斜坡按速度20/分步行15分鐘到達(dá)C處,此時(shí),測(cè)得點(diǎn)A的俯角是15°.圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上,求出建筑地所在山坡AE的高度AB.(精確到0.1米,參考數(shù)據(jù):≈1.41).

查看答案和解析>>

同步練習(xí)冊(cè)答案