(本題8分)如圖,小敏同學想測量一棵大樹的高度.她站在B處仰望樹頂,測得仰角為30°,再往大樹的方向前進4m到點C,測得仰角為60°,已知小敏同學身高(AB)為1.6m,求這棵樹的高度(DF)。(結果精確到0.1m,≈1.73).

5.1m

【解析】

試題分析:根據∠A和∠DCE的度數(shù)得到AC=CD,根據直角△CDE的勾股定理求出DE的長度,然后計算DF的長度.

試題解析:∴∠A=30°,∠DCE=60° ∴∠ADC=30°,AC=DC=4

∴∠CDE=30°,CE=2,DE=∴DF=+1.6≈5.1m

考點:直角三角形的勾股定理.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2014-2015學年福建龍巖江山中學七年級第一學期第三次月考數(shù)學試卷(解析版) 題型:選擇題

如圖,O是直線AB上的一點,OD平分∠AOC,OE平分∠BOC,則∠DOE的度數(shù)是 ( ).

A.

B.

C.

D.隨OC位置的變化而變化

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年浙江省九年級實驗B班1月聯(lián)考數(shù)學試卷(解析版) 題型:解答題

國家推行“節(jié)能減排\低碳經濟”政策后,低排量的汽車比較暢銷,某汽車經銷商購進A,B兩種型號的低排量汽車,其中A型汽車的進貨單價比B型汽車的進貨單價多2萬元,花50萬元購進A型汽車的數(shù)量與花40萬元購進B型汽車的數(shù)量相等,銷售中發(fā)現(xiàn)A型汽車的每周銷量(臺)與售價(萬元/臺)滿足函數(shù)關系式,B型汽車的每周銷量(臺)與售價萬元/臺)滿足函數(shù)關系式

(1)求A、B兩種型號的汽車的進貨單價;

(2)已知A型汽車的售價比B型汽車的人售價高2萬元/臺,設B型汽車售價為萬元/臺.每周銷售這兩種車的總利潤為萬元,求的函數(shù)關系式,A、B兩種型號的汽車售價各為多少時,每周銷售這兩種車的總利潤最大?最大總利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年浙江省九年級實驗B班1月聯(lián)考數(shù)學試卷(解析版) 題型:選擇題

若點)滿足,則點所在象限是( )

A.第一象限或第三象限 B.第二象限或第四象限

C.第一象限或第二象限 D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年浙江省九年級普通C班1月聯(lián)考數(shù)學試卷(解析版) 題型:解答題

(本題12分)為迎接中國森博會,某商家計劃從廠家采購A,B兩種產品共20件,產品的采購單價(元/件)是采購數(shù)量(件)的一次函數(shù),下表提供了部分采購數(shù)據.

采購數(shù)量(件)

1

2

A產品單價(元/件)

1480

1460

B產品單價(元/件)

1290

1280

(1)設A產品的采購數(shù)量為x(件),采購單價為y1(元/件),求y1與x的關系式;

(2)經商家與廠家協(xié)商,采購A產品的數(shù)量不少于B產品數(shù)量的,且A產品采購單價不低于1200元,求該商家共有幾種進貨方案;

(3)該商家分別以1760元/件和1700元/件的銷售單價售出A,B兩種產品,且全部售完,在(2)的條件下,求采購A種產品多少件時總利潤最大,并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年浙江省九年級普通C班1月聯(lián)考數(shù)學試卷(解析版) 題型:填空題

在一個不透明的袋中裝有紅球3個,白球2個和黑球3個,它們除顏色外都相同.從中任意摸出一個球,則摸到黑球的概率為 .

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年浙江省九年級普通C班1月聯(lián)考數(shù)學試卷(解析版) 題型:選擇題

如圖,圓錐的底面半徑則這個圓錐的側面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年湖南省郴州市九年級上學期期中考試數(shù)學試卷(解析版) 題型:填空題

如圖,在△ABC中,D、E分別是AC、AB邊上的點,∠AED=∠C,AB=6,AD=4,AC=5,則AE=_______.

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年貴州省安順市九年級第一學期期末教學質量檢測數(shù)學試卷(解析版) 題型:選擇題

下列事件為不可能事件的是( )

A.某射擊運動員射擊一次,命中靶心

B.擲一次骰子,向上一面是3點

C.找到一個三角形,其內角和是200º

D.經過城市中某一有交通信號燈的路口遇到綠燈

查看答案和解析>>

同步練習冊答案