【題目】如圖,數(shù)軸上A,B兩點對應(yīng)的有理數(shù)分別為xA=﹣5xB6,動點P從點A出發(fā),以每秒1個單位的速度沿數(shù)軸在A,B之間往返運動,同時動點Q從點B出發(fā),以每秒2個單位的速度沿數(shù)軸在B,A之間往返運動.設(shè)運動時間為t秒.

(1)當(dāng)t2時,點P對應(yīng)的有理數(shù)xP______PQ______;

(2)當(dāng)0t11時,若原點O恰好是線段PQ的中點,求t的值;

(3)我們把數(shù)軸上的整數(shù)對應(yīng)的點稱為“整點”,當(dāng)P,Q兩點第一次在整點處重合時,直接寫出此整點對應(yīng)的數(shù).

【答案】(1)﹣3,5;(2)t17(3)6.

【解析】

1)先求出P,Q對應(yīng)的數(shù),再求PQ的值;(2)結(jié)合數(shù)軸①當(dāng)0t5.5時,點Q運動還未到點A,有APt,BQ2t.此時OP|5t|,OQ|62t|.②當(dāng)5.5t≤11時,點P在數(shù)軸上原點右側(cè),點Q已經(jīng)沿射線BA方向運動到點A后折返,要使原點O恰好是線段PQ的中點,點Q必須位于原點O左側(cè);列出相應(yīng)方程即可;(3)分兩種情況求出t: ①當(dāng)0t5.5時,點Q運動還未到點A,當(dāng)P,Q兩點重合時,PQ相遇;②當(dāng)5.5t≤11時,點P在數(shù)軸上原點右側(cè),點Q已經(jīng)沿射線BA方向運動到點A后折返,當(dāng)P,Q兩點重合時,點Q追上點P,AQAP.

解:(1)當(dāng)t2時,點P對應(yīng)的有理數(shù)xP=﹣5+1×2=﹣3

Q對應(yīng)的有理數(shù)xQ62×22,

PQ2(3)5

故答案為﹣35;

(2)xA=﹣5xB6,

OA5,OB6

由題意可知,當(dāng)0t≤11時,點P運動的最遠路徑為數(shù)軸上從點A到點B,點Q運動的最遠路徑為數(shù)軸上從點B到點A并且折返回到點B

對于點P,因為它的運動速度vP1,點P從點A運動到點O需要5秒,運動到點B需要11秒.

對于點Q,因為它的運動速度vQ2,點Q從點B運動到點O需要3秒,運動到點A需要5.5秒,返回到點B需要11秒.

要使原點O恰好是線段PQ的中點,需要P,Q兩點分別在原點O的兩側(cè),且OPOQ,此時t≠5.5

①當(dāng)0t5.5時,點Q運動還未到點A,有APtBQ2t

此時OP|5t|,OQ|62t|

∵原點O恰好是線段PQ的中點,

OPOQ,

|5t||62t|

解得t1t

檢驗:當(dāng)t時,P,Q兩點重合,且都在原點O左側(cè),不合題意舍去;t1符合題意.

t1;

②當(dāng)5.5t≤11時,點P在數(shù)軸上原點右側(cè),點Q已經(jīng)沿射線BA方向運動到點A后折返,要使原點O恰好是線段PQ的中點,點Q必須位于原點O左側(cè),此時P,Q兩點的大致位置如下圖所示.

此時,OPAPOAt5,OQOAAQ52(t5.5)162t

∵原點O恰好是線段PQ的中點,

OPOQ,

t5162t

解得t7

檢驗:當(dāng)t7時符合題意.

t7

綜上可知,t17;

(3)①當(dāng)0t5.5時,點Q運動還未到點A,當(dāng)P,Q兩點重合時,PQ相遇,此時需要的時間為:秒,

相遇點對應(yīng)的數(shù)為﹣5+=﹣,不是整點,不合題意舍去;

②當(dāng)5.5t≤11時,點P在數(shù)軸上原點右側(cè),點Q已經(jīng)沿射線BA方向運動到點A后折返,當(dāng)P,Q兩點重合時,點Q追上點PAQAP,

2(t5.5)t,解得t11,

追擊點對應(yīng)的數(shù)為﹣5+116

故當(dāng)P,Q兩點第一次在整點處重合時,此整點對應(yīng)的數(shù)為6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料: 厲害了,我的國!
近年來,中國對外開放的步伐加快,與世界經(jīng)濟的融合度日益提高,中國經(jīng)濟穩(wěn)定增長是世界經(jīng)濟復(fù)蘇的主要動力.“十二五”時期,按照2010年美元不變價計算,中國對世界經(jīng)濟增長的年均貢獻率達到30.5%,躍居全球第一,與“十五”和“十一五”時期14.2%的年均貢獻率相比,提高16.3個百分點,同期美國和歐元區(qū)分別為17.8%和4.4%.分年度來看,2011、2012、2013、2014、2015年,中國對世界經(jīng)濟增長的貢獻率分別為28.6%、31.7%、32.5%、29.7%、30.0%,而美國分別為11.8%、20.4%、15.2%、19.6%、21.9%.
2016年,中國對世界經(jīng)濟增長的貢獻率仍居首位,預(yù)計全年經(jīng)濟增速為6.7%左右,而世界銀行預(yù)測全球經(jīng)濟增速為2.4%左右.按2010年美元不變價計算,2016年中國對世界經(jīng)濟增長的貢獻率仍然達到33.2%.如果按照2015年價格計算,則中國對世界經(jīng)濟增長的貢獻率會更高一點,根據(jù)有關(guān)國際組織預(yù)測,2016年中國、美國、日本經(jīng)濟增速分別為6.7%、1.6%、0.6%.
根據(jù)以上材料解答下列問題:
(1)選擇合適的統(tǒng)計圖或統(tǒng)計表將2013年至2015年中國和美國對世界經(jīng)濟增長的貢獻率表示出來;
(2)根據(jù)題中相關(guān)信息,2016年中國經(jīng)濟增速大約是全球經(jīng)濟增速的倍(保留1位小數(shù));
(3)根據(jù)題中相關(guān)信息,預(yù)估2017年中國對世界經(jīng)濟增長的貢獻率約為 , 你的預(yù)估理由是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )

A. 平面內(nèi),沒有公共點的兩條線段平行

B. 平面內(nèi),沒有公共點的兩條射線平行

C. 沒有公共點的兩條直線互相平行

D. 互相平行的兩條直線沒有公共點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(0,a)、Bb,0)、Cc,0),且=0.

(1)直接寫出 A、BC 各點的坐標:A_______;B__________;C_____

(2)過 B 作直線 MNAB,P 為線段 OC 上的一動點,APPH 交直線 MN 于點 H,證明:PAPH

(3)在(1)的條件下,若在點 A 處有一個等腰 Rt△APQ 繞點 A 旋轉(zhuǎn),且 APPQ,∠APQ=90°,連接 BQ,點 G BQ 的中點,試猜想線段 OG 與線段 PG 的數(shù)量關(guān)系與位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD、AE分別是△ABC的高和角平分線,∠B=30°,∠C=70°,分別求:

(1)∠BAC的度數(shù);

(2)∠AED的度數(shù);

(3)∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx+b(k≠0)與雙曲線y= 相交于點A(m,3),B(﹣6,n),與x軸交于點C.
(1)求直線y=kx+b(k≠0)的解析式;
(2)若點P在x軸上,且SACP= SBOC , 求點P的坐標(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.
(1)求該二次函數(shù)的對稱軸方程;
(2)過動點C(0,n)作直線l⊥y軸. ①當(dāng)直線l與拋物線只有一個公共點時,求n與m的函數(shù)關(guān)系;
②若拋物線與x軸有兩個交點,將拋物線在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象.當(dāng)n=7時,直線l與新的圖象恰好有三個公共點,求此時m的值;
(3)若對于每一個給定的x的值,它所對應(yīng)的函數(shù)值都不小于1,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一張對邊互相平行的紙條,折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論正確的有( )

(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習(xí)冊答案